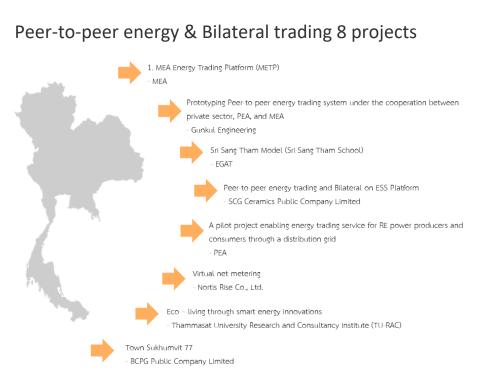

# Emerging trends towards innovative and smart business models for energy sector in Thailand.

Dr. Phimsupha Kokchang

Researcher, Energy Research Institute, Chulalongkorn University

June 19, 2020


# **Evolution of Thailand's Solar PV Policy**



# Innovative and smart business models in energy sector

| Types of projects                                                | Submitted<br>Projects | Approved projects |
|------------------------------------------------------------------|-----------------------|-------------------|
| 1. Peer-to-peer energy<br>& Bilateral trading                    | 137                   | 8                 |
| 2. New tariffs such as<br>net metering, net<br>billing           | 7                     | 6                 |
| 3. Microgrid                                                     | 17                    | 4                 |
| 4. Battery storage                                               | 11                    | 4                 |
| 5. New business<br>model such as Supply<br>and load aggregators. | 8                     | 2                 |
| 6. Natural gas                                                   | 2                     | 1                 |
| <u>Total</u>                                                     | 183                   | 25                |
|                                                                  | (00(0))               |                   |

## ERC approved 25 projects under ERC sandbox.



Source: Energy Regulatory Committee (2019)

# Case 1: University Smart Campus under ERC sandbox

#### Project detail:

• Chulalongkorn University has a vision to develop smart city in Chula campus under the concept of SMART 5, comprising of Smart energy, Smart environment, Smart security, Smart mobility and Smart community.

#### Location: Chulalongkorn University campus

Project owner and partners: Chula, MEA, Energy Absolute (E@)

#### **Objective of the project:**

- To test the operation of the peer-to-peer energy trading platform between buildings in Chula campus.
- To develop smart contract and test new market mechanisms.
- To provide the guidelines of designing wheeling charge and understand its impact to P2P energy trading.



# Case 1: University Smart Campus under ERC sandbox

### **Existing regulation barriers:**

- Grid code issue -> Not allow excess generation fed back into the grid.
- Wheeling charge on power grid connection

### **Expected implications and lessons learnt**:

- Relax grid code -> allow excess generation fed back to the grid without installing Reverse power flow relay.
- Design smart contract for business operation.
- The recommendation on designing appropriate wheeling charge of P2P energy trading for regulator.

# Case 2. TOWN T77

#### **Project Detail:**

- Develop a P2P solar rooftop trading trail platform using Blockchain technology developed by Power Ledger
- *Project participants:* a shopping mall, apartments, a school, and a dental hospital
- *Installed capacity:* 635 kilowatts of solar rooftop systems combined with battery storage, supplying 20% of the electricity needs of entire community.

Location: Town Sukhumvit (T77), Bangkok

#### **Objectives of the project**

- To test the operation of the peer-to-peer energy trading platform.
- To understand the implementation of Blockchain technology for electricity trading.
- To study the guideline for determining the wheeling charge of MEA.



### **Project owner and partners:** BCPG (RE business) and MEA

Power ledger P2P platform goes across the meter with BCPG at T77 precinct, Bangkok. Medium; 2018. [Online]. Available: https://medium.com/power-ledger/power-ledger.p2p-platform-goes-across-the-meter-with-bcpg-at-t77-precinctbangkok-62df5aba3d0a

# Case 2. TOWN T77

### Existing regulation barriers:

- licensed energy supplier issue
- Tax issue
- Billing and settlement process
- Wheeling charge on power grid connection

### **Expected implications and lessons learnt**:

- Enhanced single buyer concept need to be revised/updated.
- The recommendation on designing appropriate wheeling charge of P2P energy trading to commercial buildings customer for MEA.
- The recommendation on collection of income tax and value-added tax should be exempted for individuals in P2P trade to facilitate transactions and bill payments in the future.

# Key Takeaways

### 1. DER Deployment policy

a solar target 10,000 MW household solar scheme (PDP 2018).

### 2. P2P Energy trading Model

Take lesson learnt and recommendations from ERC sandbox projects to inform regulatory changes a solution to enhance the uptake of solar PV installation in the household sector.

- Design appropriate market mechanisms for P2P energy trading.
- Design smart contracts for business operation.
- Determine appropriate wheeling charge and the impact on electricity rate.
- Resolve the issues related to licensed energy suppliers, billing and settlement.



# Thank you

### Resources [[Phimsupha.k@chula.ac.th, www.eri.chula.ac.th]]

Distributed Energy Resources | ACEF 2020 Deep Dive Workshop | 9