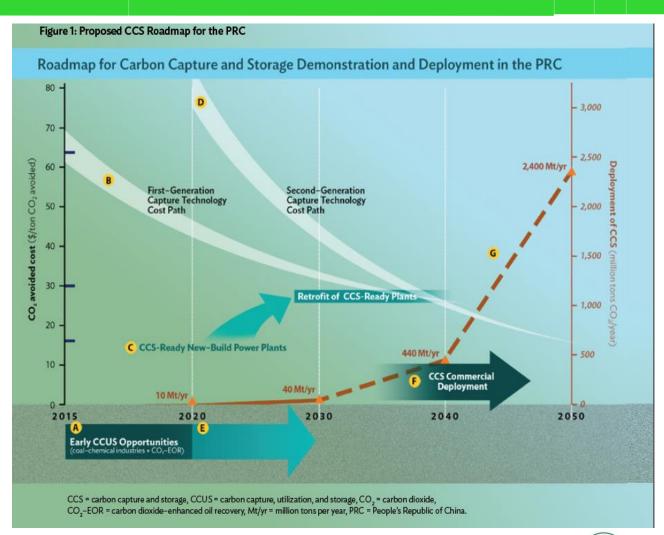

CCUS Roadmap of China

Zhang Xiliang Institute of Energy, Environment and Economy Tsinghua University

清华大学能源环境经济研究所 INSTITUTE of ENERGY, ENVIRONMENT and ECONOMY TSINGHUA UNIVERSITY

Global CCS Policy Overview


GCCSI Policy Index 2017³ (The circle size represents the number of large-scale CCS projects in the country)

2

Source: GCCSI, 2017

CCUS Roadmap of PRC published in 2014 by ADB

ADB CCUS Roadmap Update Project

- Update on the progress achieved during 13th FYP
- Revisit and revise the key numbers and conclusions of the CCUS roadmap 2014
- Extension of the sector coverage
 - Cement
 - Iron and Steel
 - Hydrogen+CO₂ utilization
- New analysis of the role of CCUS deployment
 - Integrating CCUS deployment analysis with 2/1.5 degree target

CCUS development and Deployment during 13th FYP

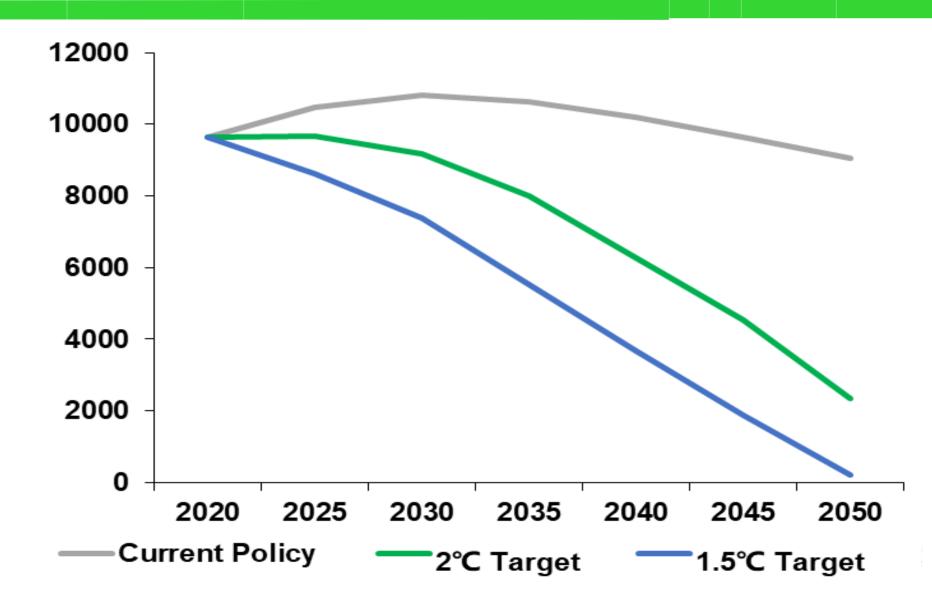
- China's policy support for CCUS, its inherent interest and the number of large-scale CCS projects are all in the leading position in the world.
- CCUS deployment in 2020 could lead to 1.6 millions ton of CO₂ avoidance, but far less than the targeted 10 millions as shown in the CCUS roadmap 2014
- CCUS deployment by sector
 - Chemical engineering sector: 1.1 million ton
 - Power generation: 0.5 million ton
- Barriers to CCUS deployment
 - Technology
 - Cost
 - Transport infrastructure
 - Institution

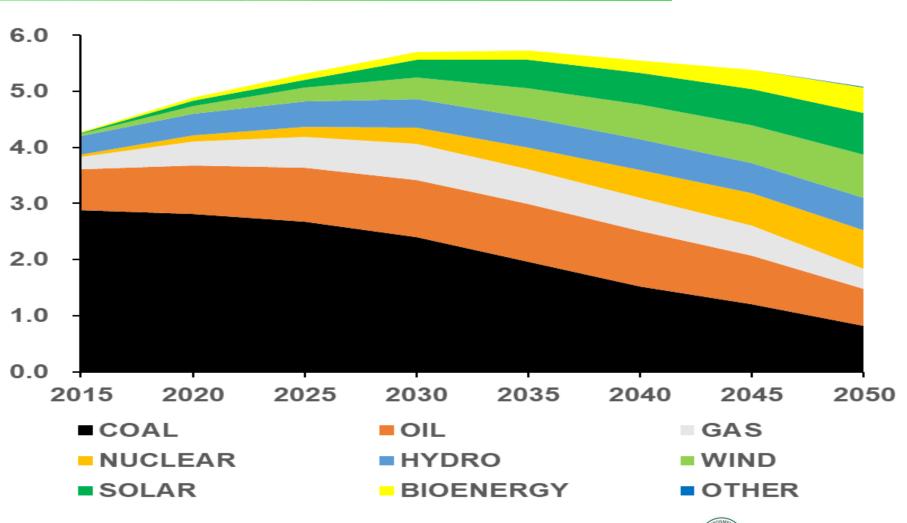
project	capture mode	transport mode	storage/ utilization	scales	status
Shanghai Shidongkou Power Plant of China Huaneng Group	capture after combustion of coal-fired power plant	by tank car	utilization in food industry or in industrial field	120,000 t/a	put into operation in 2009 intermittent operation
Tianjin green coal power project of China Huaneng Group	pre-combustion capture for IGCC	by pipeline distance: 50 - 100km	planned EOR of Dagang Oilfield in Tianjin	60,000 t/a	Carbon capture unit completed. Carbon storage project delayed.
Demonstration of CCUS in Shengli Oilfield, Sinopec	Capture after combustion of coal-fired power plant	by pipeline distance: 80km	EOR of Shengli oil field	40000 t/a in the first stage, 1 million t/a in the second stage	Phase I put into operation in 2010
Shuanghuai power plant in Chongqing of China Power Investment Corporation	capture after combustion of coal-fired power plant	no	For welding protection, gas replacement of hydrogen cooling generator in power plant, etc.	10,000 t/a	put into operation in 2010, in operation
35 MW Oxygen-Enriched Combustion Project of HUST	oxygen-enriched combustion in coal-fired power plant	by tank car	marketing, utilization in industrial field	100,000 t/a	Built in 2014, suspension of operation
Lianyungang clean coal power system research facility	pre-combustion capture for IGCC	by pipeline	geological storage of saline water layer	30,000 t/a	put into operation in 2011, in operation
Tianjin Beitang power plant CCUS project	capture after combustion of coal-fired power plant	by tank car	marketing, utilization in food industry	20,000 t/a	put into operation in 2012, in operation
Haifeng Power Plant of Huarun Power	capture after combustion of coal-fired power plant	By pipeline	utilization in food industry and geological storage of saline water layer	20,000 t/a	Operation in 2019
					of ENERGY ENVIRONMENT and ECONOMY

Resource: MI Jianfeng, Proceedings of the CSEE, Vol.39 No.9

INSTITUTE of ENERGY, ENVIRONMENT and ECONOMY TSINGHUA UNIVERSITY

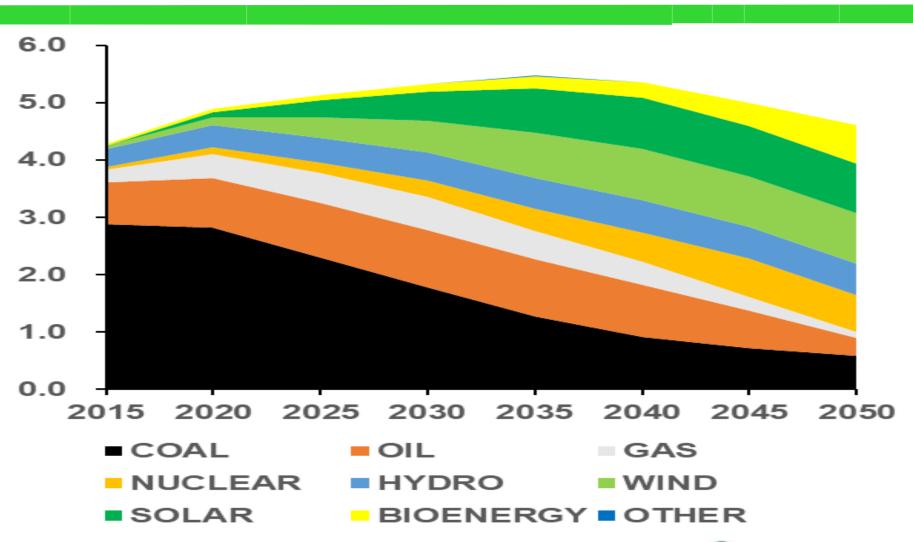
Carbon capture project at Baima Cement Plant in Wuhu City with a CO₂ capture capacity of 50Kt ton per year



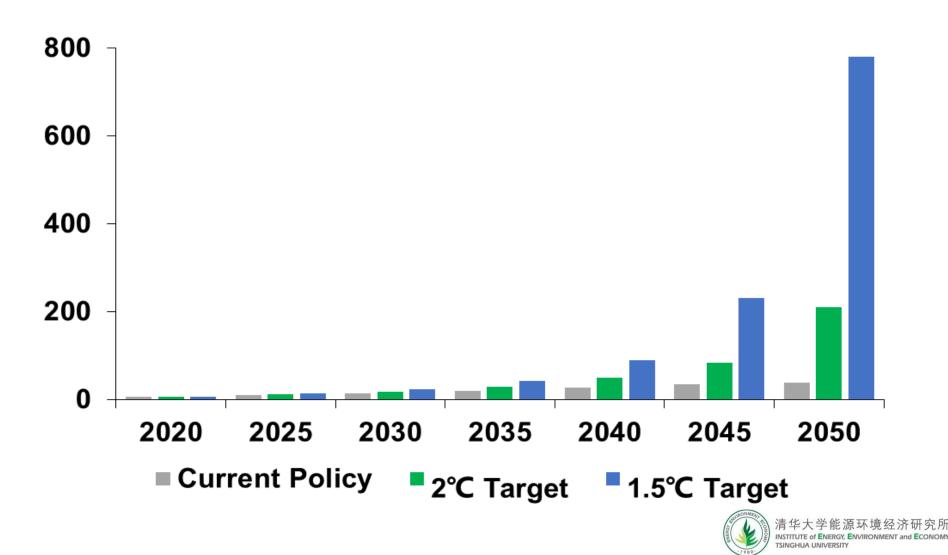

CO₂ utilization pilot and demonstration projects

No.	Project	Location	Scale	Status
1	Yanchang CO ₂ capture and EOR Demostration	Shaanxi	100K ton/year	Started in Sep 2012
2	CO ₂ -EOR Demonstration in Ordos basin by PetroChina and Shenhua	Changqing	1M ton/year	Started in July 1, 2017
3	CO ₂₋ EOR in Xinjiang Oil field by PetroChina	Xinjiang	0.5M ton/year	Pilot started
4	CO ₂ EOR in Daqing Oil field	Daqing	O.5M ton/year	Pilot started
5	CCUS Hub in Xinjiang by PetroChina	Xinjiang	3M ton/year	planned
6	Microalgae fixation of CO ₂	Zhengzhou	80 ton/year	Started in2017
7	Hydrogenation of CO2 to methanol	CNOOC	5000 ton	2019
8	Synthesis gas from CO2	Shanxi	20K ton/year	2017
9	Direct mineralization of steel slag and dust and utilization of flue gas CO2	Shanxi	0.5M ton/year	2020

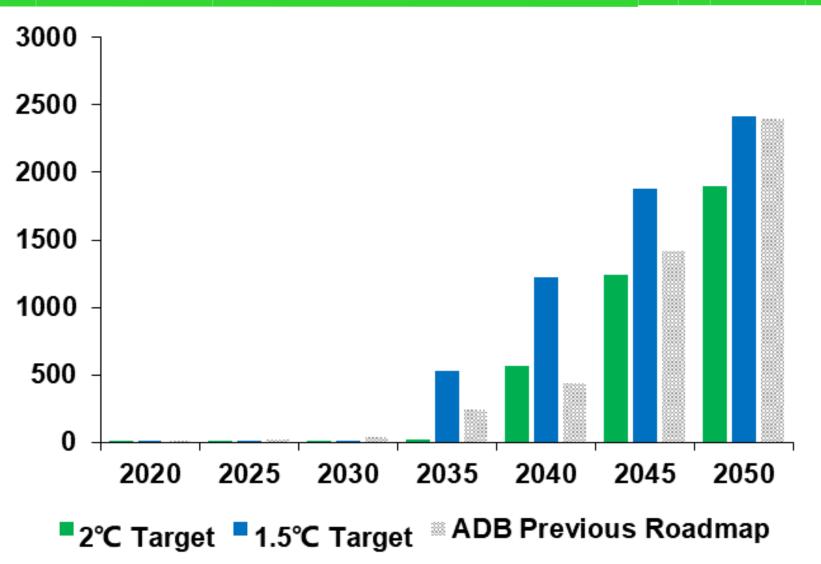
Energy-Related CO₂ Emission, Mt/yr


Total primary energy supply - 2°C Target , Gtce

IN CONTRACTOR OF CONTRACTOR OF

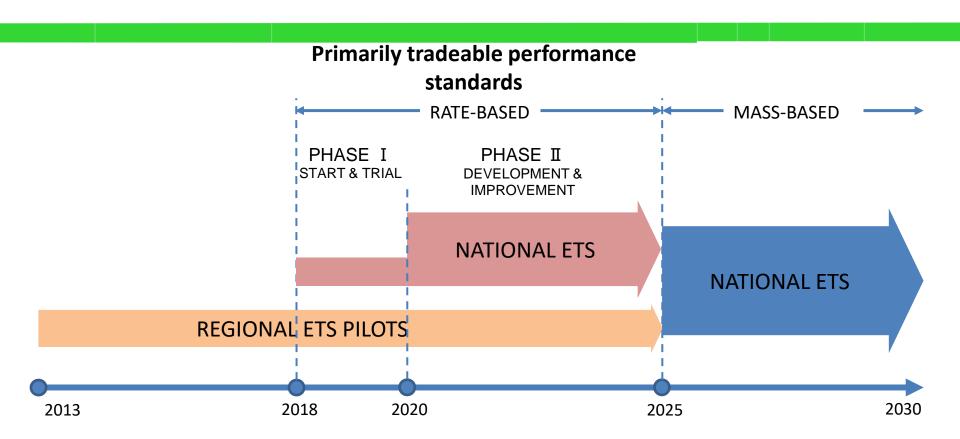

清华大学能源坏境经济研究所 INSTITUTE of ENERGY, ENVIRONMENT and ECONOMY TSINGHUA UNIVERSITY

Total primary energy supply – 1.5°C Target , Gtce



Carbon price , US\$/t CO₂ (2011 constant price)

Deployment of CCS, Mt/yr


经济研究所 MENT and ECONOMY

Highlights of the new analysis

- Total deployment of CCUS in terms of CO₂ avoidance
 - 3.5 Mt for 2025, 10 Mt for 2030, 1200Mt for 2040, and 2400 Mt for 2050 to achieve the 1.5°C target
- Priority sectors for CCUS deployment before 2035
 - Chemical engineering
 - Natural gas processing
 - Power generation
- Priority sectors for CCUS deployment from 2035 to 2050
 - Coal-fired power generation
 - Bioenergy CCS (BECCS)
 - Iron & Steel
 - Cement
 - Hydrogen production
- Carbon pricing is a key enabling policy instrument

Implementation roadmap of China's national ETS

It will start with the *power generation* and ultimately extend to 8 sectors, including iron & steel, non-ferrous metal, construction material, petrochemical engineering, chemical engineering.

Thank you for your attention. Zhang_xl@Tsinghua.edu.cn

