

Nicolas Bernier, 5^{ft} June 2018

Waste Heat Recovery using Organic Rankine Cycle turbines

Industrial waste heat: the example of France (1)

Source: ADEME (2014)

Source: ADEME (2014)

Secteurs industriels, origines et caractéristiques des rejets thermiques donnés à titre indicatif.

Industrial waste heat: the example of France (3)

Source: ADEME (2014)

Industrial waste heat: the example of France (4)

Source: ADEME (2014)

Industrial waste heat: the example of France (5)

1,1 TWh250 sites1,400 MWe potential

Source: ADEME (2014)

production

production

Industrial Waste Heat Recovery

Organic Rankine Cycle

Expanding heat to power scope of possibilities

- ⊳ no fuel

- □ no chemicals*
- □ no need for high pressure

^{*} hot loop

WHR using ORC technology in the world

In operations for 35 years, producing more than 3,000 MW worldwide!

Source: orc-world-map.org (2015)

More players since the years 2000

WHR using ORC technology: types of activities

Source: orc-world-map.org (2015)

Reminder of Organic Rankine Cycle (ORC) technology

Figures for a very low enthalpy waste heat recovery

Comparative table between ST and ORC solutions (1)

Steam turbines	ORC turbines
purified water steam	thermal oil or superheated water
20 to 300 bar	5-20 bar
250-550°C	80-330°C
yes (water purification)	no
yes (water purification)	no
dry purified water steam (HP)	« organic » fluid
possible droplets at LP stages	
yes	no
20 to 300 bar	5-20 bar
250-550°C	80-330°C
	< 2 bar
100-45°C	~60°C
possible	possible
up to tens of stages	1 to ~15
up to several meters	10 to 60 cm
1800-3600 rpm	up to 1800 rpm
	purified water steam 20 to 300 bar 250-550°C yes (water purification) yes (water purification) dry purified water steam (HP) possible droplets at LP stages yes 20 to 300 bar 250-550°C 100-45°C possible up to tens of stages up to several meters

Comparative table between ST and ORC solutions (2)

ORC *versus* steam turbines technologies Financial benefits choosing ORC tech.

	ST	ORC
Availability	80-90%	98%
Load variation	-5/+5%	-60/+120
Pressure, temperature	High	Low
Corrosion (efficiency decrease)	Yes	No
Lifetime	15	20-25
Water consumption, chemicals	Yes	No
Maintenance, OPEX	High	Low

	ST	ORC
CAPEX	+	-
Installation and commissioning	-	+
Exploitation, availability (incomes)	-	+
Maintenance, OPEX	-	+
Value and options at the end of the PPA	-	+
Overall benefits at the end of the PPA	-	+

Steam and ORC turbines

Steam turbine

Turbo expander: combination of a micro turbine with an integrated generator

Potential applications are not only ORC but also CO2 cycle, natural gas expansion, process gas expansion, hot air energy recovery

Various ORC applications

Biogas, landfill gas

- → Enhancement of biogas engine via exhaust, water jacket or both
- → Direct biogas to electricity conversion with boiler

Solar

- → Solar CHP with CSP field
- → Solar CHP with CSP and heat storage

Biomass

- → Biomass to electricity
- → Biomass CHP
- → Isolated site

Geothermal

- 9 Natural hot sources
- → Medium temperature wells (from 80°C)

Renewable Energies

Industrial Waste Heat Recovery

- → Process Heat
- → Exhaust gases
- → Waste steam

Diesel and gas gensets

 Efficiency enhancement via exhaust, water jacket or both

Energy Efficiency

Transportation

- → Vessels
- → Railroad
- → Heavy Duty Trucks

Education and research

→ With boiler simulating heat source

Industrial waste heat recovery

- still mills
- **▶** foundries
- □ refineries
- □ aluminium smelters
- ▶ incinerators
- ▶ plants treating sewage through incineration
- ▶ paper factories
- □ agro-industry
- ⊳ etc.

- fumes
- industrial process
- excess steam

Case study: cement factory (1)

Case study: cement factory (2)

Scope / Investment

2x ATM-3000H (2 x ORC 3000 kWe)

Estimated CAPEX for turnkey PP: 20 MUSD

Incentives: 0

Annual OPEX: 0.5 MUSD

Performance

Net production: 5742 kWe

ORC availability: 8500 h (97 %)
Global availability: 8000 h (91%)
Annual production: 45.936 GWh

Profitability

TRI (80 USD/MWh): 6 years

TRI (100 USD/MWh): 5 years

LCOE (10 years): 54 USD/MWh LCOE (20 years): 32 USD/MWh

Case study: WHR from biomass dryer (1)

Charcoal and pelets factory:

Hot air

recovering excess heat from the dryer

Case study: WHR from biomass dryer (1)

Scope / Investment

1x ENO-200LT (ORC 200 kWe)

Estimated global CAPEX: 600 kUSD

Incentives:

Annual OPEX: 15 kUSD

Performance

Net production: 180 kWe

ORC availability: 8670 h (99 %)
Global availability: 8500 h (97%)
Annual production: 1,530 MWh

Profitability

TRI (100 USD/MWh): 4- years

LCOE (10 years): 92,5 USD/MWh

Electricity tariff of 0.1 USD/kWh

Internal Combustion Engines (ICE) heat recovery

- Diesel, HFO, gas, biogas
- Exhaust gases and possibly jacket water heat the thermal oil with a heat exchanger
- Approximately 10% additional electricity is produced

Case study: WHR from a biogas engine

Integrated

cooler

8

 $\otimes \otimes$

ORC

Gas flaring

- ORC technology provides a solution to reduce flaring and venting
- Low quality gases from well are diverted to a boiler (Thermal Oil Heater).

Case study: oil wells conversion -> geothermal (1)

The estimated recoverable:

Case study: oil wells conversion -> geothermal (2)

Scope / Investment

ENO-100LT (ORC 100 kWe)

Estimated global CAPEX: 350 kUSD

Incentives:

OPEX: 30 kUSD

Performance

Gross production: 98 kWe

Net production: 88 kWe

ORC availability: 8670 h (99 %)

Global availability: 8500 h (97%)

Annual production: 748 MWh

Profitability

TRI (100 USD/MWh): 6+ years TRI (200 USD/MWh): 3- years

LCOE (10 years): 87 USD/MWh LCOE (20 years): 63,5 USD/MWh

Electricity tariff of 0.1 USD/kWh

Electricity tariff of 0.2 USD/kWh

Case study: oil wells conversion – geothermal (3)

Estimate of electricity production for various flow rates and temperatures of the source

Ship's diesel engine heat recovery (1)

Ocean Thermal Energy Conversion (OTEC)

Contact details

Thank you for your attention!

Nicolas Bernier nicolas.bernier@sustenea.com +62 899 4749 259

