

INTEGRATION OF RENEWABLE BASED GENERATION INTO SRI LANKAN GRID 2018-2028

Dr. H.M Wijekoon

Chief Engineer (Transmission Planning)

Randika Wijekoon

Electrical Engineer (Generation Planning)

Generation and Transmission Planning Branch
Ceylon Electricity Board

Sri Lanka- Country Information

Population 21.2 million

GDP per capita 3,835 USD (2016)

Area 65610 km²

Installed Capacity 4036 MW

Peak Demand 2523 MW

Annual Electricity Demand 14,620 GWh

Electrification Level 99%

Per Capita Electricity Consumption 603 kWh per yr

CO2 emissions 0.886 (metric tons per capita)

Capacity Mix and Energy Mix

	Capacity (MW)	Energy (GWh)	
CEB Hydro	1377	3014	
CEB Thermal - Coal	810	5071	
CEB Thermal - Oil	604	2560	
IPP Thermal - Oil	687	2485	
Other RE	558	1489	
Total	4036	14620	

RE Development

Energy (GWh)

Installed Capacity (MW)

Wind - 128MW Solar Rooftop - 100MW Solar Grid Scale - 50MW Total VRE - 278MW

Network and Resource Locations

Wind Resources

VRE Development Challenges

- Infrastructure development for RE resources
- High Seasonality of RE resources
- Ensuring System Stability
- Constraints in existing network
- Daily Load Variation pattern
- Ensuring adequate Operational flexibility
- Impact of DG on distribution system
- Accurate system modelling
- National Policy on energy mix

Overall Study Methodology

Renewable Energy Resource Assessment

Major Hydro, Mini Hydro, Wind , Solar, Biomass

Renewable Energy Development Projection

Future capacity additions and energy contribution
Resource availability & quality , Infrastructure availability , Technology costs

Optimization of Long Term Planning

Optimized Generation Expansion plan, 20 year planning period, Multiple scenarios

Transmission Network Study

Steady State Analysis,

Dynamic Analysis

Short term frequency stability Analysis

Medium to Short term operational study

Medium term Hydro Thermal Optimization, Economic Dispatch in 30min time steps Operational Constraints, curtailments

Results and Analysis

- Energy and Capacity Contribution
- Stability and Curtailments
- Economic Analysis of Integration scenarios

RE Resource Assessment and modelling

Major Hydro

Wind

Mini Hydro

Solar PV

Mins

Transmission Network Study

Power System Stability Studies -VRE Variability

Power output variation in a day of 10 MW Hambantota plant

Enlarged view of time period 10.30 hrs to 13.00 hrs

Aggregated output off Wind Turbines

Power System Stability Studies

Short term frequency stability analysis 100 seconds duration

Defined ramp event

Study Scenarios

Year	
2018	Case 1: Only swing machine is used for free governor
	■ Case 2: Swing machine + GT7 used for free governor
	■ Case 3: Swing machine + KCCP used for free governor
	 Case 4: With All Hydro Governor (Victoria, Kotmale, Upper Kotmale,
	N'Lax)
	 Case 5: Swing machine + KCCP + GT7 + 2x35MW GTs used for free
	governor
	Case 1: With All Hydro Governor (Victoria, Kotmale, Upper Kotmale,
	N'Lax) used for free governor
2020	 Case 2: Swing machine + KCCP + GT7 used for free governor
	 Case 3: Swing machine + KCCP + GT7 + LNG used for free governor
	■ Case 4: Swing machine + KCCP + GT7 + LNG + 2x35MW GTs used for
	free governor
2020, 2025, 2028	■ LNG + GTs + Hydro (Victoria, Kothmale, Upper Kothmale)

Ramp Rate defined for 540 kW Solar PV Plant

Power System Stability Studies

Short term frequency stability analysis

Different Solar Penetration Levels

Different Regulating scenarios

Studied years-2018,2020,2022,2025,2028

Power System Stability Studies

Short term frequency stability - Results

Scenario	State	
Hydro Maximum Day Peak – DH	System Stable with Load Shedding	
Thermal Maximum Day Peak - DT	System Stable with Load Shedding	
Minimum ORE Day Peak - ORE_DP	System Stable	
Hydro Maximum Night Peak - NH	System Stable with Load Shedding	
Thermal Maximum Night Peak - NT	System Stable	
Minimum ORE Night Peak - ORE_NP	System Stable	
Hydro Maximum Off Peak - HMOP	System Stable with Load Shedding	
Thermal Maximum Off Peak - TMOP	System Stable	

System Operation Study

- Medium term hydro thermal optimization and operational analysis with the tool SDDP
- Short term economic dispatch and operational analysis with the tool NCP

- Time series demand data
- Hydrological Inflow Data
- Hydro/ Thermal plant technical parameters
- Hydro/ Thermal plant operational constraints
- Hydro inflow forecasting methodology
- Fuel Prices and O&M cost of thermal plants

- Annual power plant additions/retirements
- Plant maintenance and outages
- Annual Renewable capacity development
- Time Series RE resource profiles
- operating reserve requirements
- System operational constraints

OPERATIONAL STUDY (Dispatch Results 2025- High wind season)

Variable Renewable Energy Curtailment

Year	Maximum NCRE Curtailment Requirement						
	Dry Period		High Wind Period		Wet period		
	Weekday -Offpeak -Daytime	Weekend -Offpeak - Daytime	Weekday -Offpeak - Daytime	Weekend -Offpeak - Daytime	Weekday -Offpeak - Daytime	Weekend -Offpeak - Daytime	
		Case 1: With Future C	oal Power, LNG and Pum	ıp Storage Development			
2020	None	None	150MW None	80 MW 50 MW	170MW None	140MW None	
2022	None	None	220MW None	140MW 100MW	None	None	
2025	None	None	380MW None	330MW 280MW	70MW None	20MW None	
2028	-	-	70MW None	30MW 111MW	-	-	
		Case 2: With No Futu	re Pump Storage and Co	al Power Development			
. With new co	ombined cycle minim	um load operation o	constraint at 50%				
2025	None	None	445MW None	380MW 430MW	None	None	
2028	None	None	80MW None	200MW 276MW	None	None	
. With new co	ombined cycle minim	um load operation o	constraint at 30%				
2025	None	None	215MW None	175MW 160MW	None	None	
		Case 3: LNG Devel	opment Restricted to W	estern Province only			
2028	-	-	70MW None	60MW 185MW	-	-	

Study Outcome

Provisions for Annual RE Capacity Additions

The study enabled the Average Annual Absorption of Other Renewables to be nearly four times higher than the past.

Ongoing Work

Understanding System Flexibility

Flexibility Requirement

- Flexibility Reserve
- Ramp characteristics

Sources of Flexibility

- Dispatchable Generation
- Storage
- Demand Side activities
- Interconnections

Minimizing Flexibility

Geographical Spread

Assessing Flexibility Reserve Requirement with VRE

Regulating Reserve Estimation for VRE development

Evaluating Flexibility requirement

Main attributes of the flexibility requirement

- Magnitude of the ramp
- Ramp duration
- Ramp rate
- Frequency of occurrence

Analytical techniques

 Impact of Plant minimum operating level Production simulation

- Ramp Magnitude
- Ramp Duration
- Ramp rate

Assessing Flexibility requirement

Ramp events in VRE development scenarios

Duration curves of Ramp Rate Requirement

Flexibility of Generating Units

Flexible contribution of future regulating units

Aggregated Regulation Response Availability

With Coal, Combined Cycle and Pumped Hydro units

With only combined cycle units

Impact of Pumped Storage Hydro Plant Operation

VRE Curtailment

Baseload Plant Cycling

Assessing the Variability of Distributed Solar PV

Temporal Variability

99.7 Percentiles of Variations at different time frames

Analyzing Demand Side activities

Impact of EV charging load on the flexibility Requirement

Upward Regulating Reserve Requirement

Way Forward

- Diversified and Prioritized resource locations for VRE
- Establishing wind and solar forecasting systems to the national dispatch center.
- Providing Variable Renewable Energy (VRE) curtailment rights to system operator
- Base load power plants with increased flexibility.
- Utilizing Demand side management and response to provide flexibility
- Continuous upgrades to RE integration studies
- Proper and timely implementation of VRE and other major power plants

Thank You