

Asia Clean Energy Forum-2018

Manila, 4-8 June, 2018

"Quantifying demand side opportunities to improve integration of renewable energy in mini-grids in Nepal"

Bhupendra Shakya¹
PhD candidate
Anna Bruce^{1,3}, Iain MacGill^{2,3}

¹ School of Photovoltaics and Renewable Energy Engineering,
² School of Electrical Engineering and Telecommunications

³ Centre for Energy and Environmental Markets
University of New South Wales (UNSW),

Sydney, NSW 2052, Australia

Summary

- Integrating variable renewable energy into mini-grids increases the challenge of matching demand and supply.
- Current design practices for Renewable Energy Mini-Grid (REMG) systems are supply oriented and can miss some key opportunities on the demand-side to deliver low cost and reliable energy services.
- Users place different relative value on energy services, while some energy services
 have considerable flexibility due to inherent energy storage in the end-use
 equipment used, or user willingness to shift their usage, depending on affordability
 and reliability preferences.
- Present results of surveys of energy service characteristics across 154 households in five mini grids in Nepal in order to better understand and quantify these opportunities.
- Data presented includes energy consumption patterns, appliance ownership, energy service preferences and priorities and potential flexibility to move some loads across the day.
- Quantification of these characteristics can be used to design REMGs that are low cost and reliable.

Key Barriers

 'UN SE4All', REMG -High Impact Opportunity (HIO) to provide electricity access and 40% electricity from MG by 2030

Key barriers in REMG deployment are

- 1. System design complexities (sizing): matching between variable supply and demand¹
- High capital cost and uncertainties²

Energy Service Approach and opportunities:

- Key value of energy supply is in service provision (lighting, cooking, refrigeration)
 not kWh delivered³
- Users assign relative value to energy services preferences, capabilities
- Possible flexibility of energy services (inherent storage in appliances and services)
- Opportunity to better utilise RE at lower cost to meet most important energy service needs
 - Solar Home System (SHS) users very engaged to prioritise the Energy services
 - Grid users not very engaged
 - REMG users have opportunity to engage

Techno-economic and Social Characteristics

	Solar- Wind-MG	Solar- Battery	Solar-diesel MG,	Micro-hydro MG,	Mini hydro MG	
Generating Capacity (kW)	25 (15 PV+10 Wind)	18 PV	63 (31 PV + 40 DG)	26	1030	
Settlement	Rural Market centre	Rural Market centre	"Commercial" Rural Market centre centre		Rural / "Commercial centre"	
Ownership structure	Community	Private/community	Private / community	Community / Cooperative	Cooperative	
Adequacy of supply	Access Deficit	Spare power	Access Deficit	Access Deficit	Adequate	
Metering	No meter, power limiter (MCB)	Smart meter	Smart meter	Traditional meter	Traditional meter	
Tariff (US c/kWh)	4 - 13	16 - 75	31 - 98	4 - 7	4 - 5	
Productive end- uses	Poultry, Eatery	Poultry, Eatery	Telcom tower, Petrol pump, Health Centre	Agro-processing Mill, Furniture, Metal workshop	Agro-processing Mill, Furniture, Bakery, Metal workshop	

Annual household energy consumption

Consumption depends on: types of supply sources, settlement, tariff structure

Access Status: Multi-tier framework-service

- Tier 5: Tier 4+ high power appliances
- Tier 4: Tier 3+Electric kettle, Water heater+ Heater-cooker
- Tier 3: Tier 2+Rice cooker, electric food processor, Refrigerator, Water pump
- Tier 2: Tier 1+Fan, TV, Laptop, Computer, Printer
- Tier 1: Lighting, Phone charging, Radio

	Solar Wind	Solar Battery			Mini
	MG	MG	MG	Hydro	Hydro
Reliability, interruption/ week (index)	<14 (4)	<3 (5)	<14 (4)	<3 (5)	<3 (5)
Duration, hours/day (index)	<8 (2)	23 (5)	<16 (3)	<22 (4)	23 (5)
Quality, appliance under perform due to					
over/ under voltage)	14% (4)	0% (5)	29% (4)	60% (3)	26% (4)
Access Index	1.75	1.25	1.81	2.13	2.41

Appliance Preferences

Order of preferences- Light, Mobile phone, Television, Rice cooker, Refrigerator

Energy service characterisation framework

Low Preference High Storability (L-H)

service shiftable or interruptible

Storability

High Preference High Storability (H-H)

service shiftable or interruptible

Users' Preferences

Low Preference Low Storability (L-L)

service shiftable or interruptible

High Preference Low Storability (H-L)

NOT shiftable or interruptible EE measures may be possible

Service Characterisation of Mini Hydro MG

Conclusion

Supply	Energy efficiency	Demand Management Possibilities
Mini Hydro MG	Light, TV, Refrigerator	Rice cooker, refrigerator, (mobile phone, iron, rechargeable light, water pump, laptop)
Micro Hydro MG	TV	Rice cooker, (mobile phone and rechargeable light)
Solar MG	Refrigerator	Refrigerator, (mobile phone, laptop and rechargeable light)

- Proposed energy service characterisation framework and load profile can be used to develop an effective load shifting strategy
- Provides a basis for designing REMGs to provide important services at reduced cost
- Users are generally aware of or positive towards energy efficiency measures and load shifting
- Financial incentives, awareness, metering and load control mechanisms are possible options for implementation of demand side management

Thank you!

(ADB, supervisors)

(Questions Please ?)

