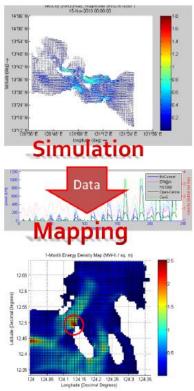
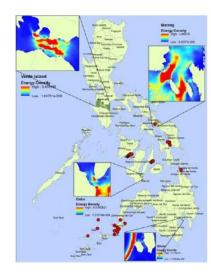
Ocean Renewable Energy in South East Asia

Michael Lochinvar Sim Abundo (Dr) Managing Director, OceanPixel Pte Ltd

OceanPixel Pte Ltd #02-15 CleanTech One Bldg., 1 CleanTech Loop, Singapore 637141

Unit 113B, Innovation Centre Block 2 18 Nanyang Drive, Singapore 637723


www.oceanpixel.org


Making Marine Renewable Energy Happen in SEA!4 Directors | 8 Staff | 3 Associates

OceanPixel is a Singapore start-up company that spun off from the Nanyang Technological University's (NTU) Energy Research Institute. OP is currently engaged in ocean energy projects in Singapore, Indonesia, and the Philippines

With OceanPixel's capabilities, we provide Multi-Site, Multi-Device, Multi-Criteria GIS Decision Approach to project development.

Turbine Selection		Name	D	CO	RS	RP	CA	W2W	Cost	
	1	EnCurren	£ 1,5000	4	3	5	1.1600	0.3100	0.829	
	2	ERIQU	1	4	3	7.5000	1.5000	0.3600	1.561	
EnCurrent	3	HS1000			2,7000	1000	346	0.2900	103.2	
	4	OpenCe.	0.7000	. 4	2.5000	20	78	0.3200	366.8	
O ERION	- 5	Gen5	1	4	2,5000	168	10	0.3500	13.20	1
RS1000	6		-							
	7		-	1	1	F	T			
OpenCentre	8	T	-	2		T	Ť	Ť		
@ Gen5	9	100		- 15				d.	•	•

- Resource Data
 - Integration
 - Processing
 - ◊ Analysis
- Device Database
 - Mechanical Specs
 - ◊ Electrical Specs
 - ◊ Cost
- Installation
 - Distance to Port
 - Distance to Shore (Grid)
- Constraints
 - Navigation & Shipping
 - Marine Protected Areas
 - Depth Constraints
- Suitability Scoring
 - o "Best Site" Nomination
 - o "Best Technology"
 - ◊ "Best Device"
 - ♦ Least Cost Analysis

Partners & Collaborators

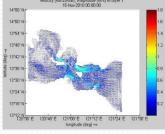
Energy Research Institute @ NTU

Orkney's renewable energy resources

Total = > 5,000 MW deliverable capacity

Key

Onshore wind	40 MW existing/planned
New onshore wind	100-200 MW
Wave	500-1000 MW
Tidal	500-2,500 MW
Offshore wind	1000 MW
Wave leases	550 MW
Tidal leases	500 MW 🔷
Mirco & other	2.5 MW 🔷
Gas & other	20 MW Dispersed
EMEC sites	5 + 7 MW Dispersed and 🔶
	of electrical demand


107% in Orkney met by renewables in 2014



South East Asia RD&D

Simulation Studies

Brunei **Offshore Wind**

Myanmar **Tidal Barrage**

Vietnam **Tidal Turbine Drive Train**

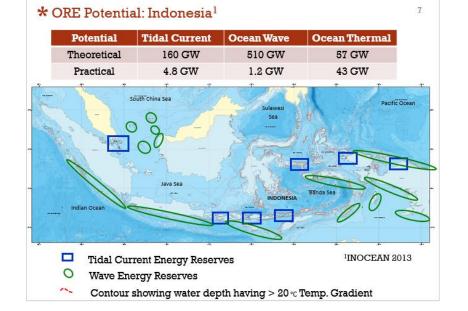
Indonesia **Tidal Current Test**

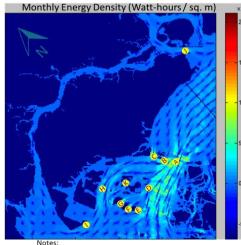

Malaysia **OWC** Test

Singapore

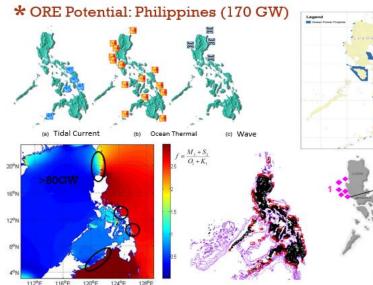
Tow Tanks

Europe, N. America, Australia

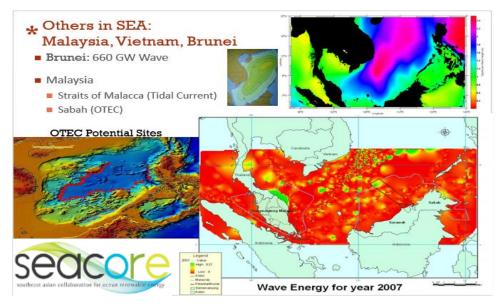



(eg UTM, MMU, NTU)

Source: SEAcORE 2013


Ocean/Marine Renewable Energy Resource in SEA

Singapore Tidal In-Stream Energy


Total R	esource ¹	~3 TWh/year		
Techni Extract Resour	able Energy	~900 – 1,200 GWh/yr		
Practic Extract Resour	able Energy	~300-600 GWh/yr		
SITE	Peak Power (MW)	Annual Energy Yield (GWh / yr)		
A	105	115.96		
В	65	71.78		
с	15	101.52		
D	20	22.09 3.31		
E	3			
F	12	3.22		
G	5	15.48		
н	15	5.06		
1	5	15.34		
J	2	7.95		
		1.66		
к	3	1.66		

Tidal In-Stream Energy Potential Sites

Wave Energy Potential Sites

OTEC Route to Grid Parity

- ³Without detrimental environmental effects , Significant Impact Factor (SIF): 0.1 to 0.2

¹Energy Density of ~1MWh/m²/month *5km length (channel width) *50m ave. depth *12 months

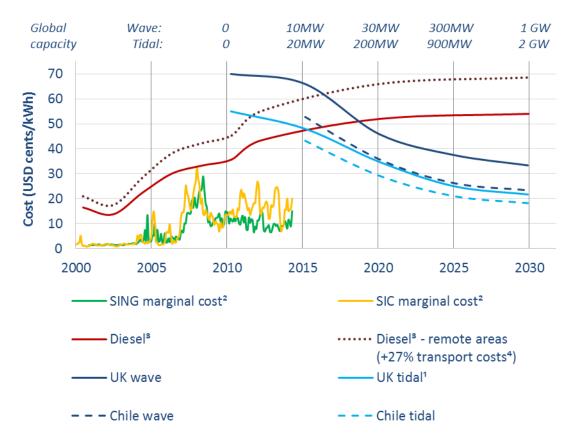
Velocity Data from PORL, TMSI, NUS

²Water-to-Wire Efficiency: 0.3 to 0.4

ERI@N

OceanPixel

Singapore Tidal In-Stream Energy	Total R	lesource ¹	~3 TWh/year
Monthly Energy Density (Watt-hours / sq. m) × 10 ⁴	Techni Extract Resour	table Energy	~900 – 1,200 GWh/yr
	Practic Extract Resour	table Energy	~300-600 GWh/yr
	SITE	Peak Power (MW)	Annual Energy Yield (GWh / yr)
	A	105	115.96
	В	65	71.78
	с	15	101.52
	D	20	22.09
	E	3	3.31
	F	12	3.22
	G	5	15.48
	н	15	5.06
	1	5	15.34
	J	2	7.95
S -5	к	3	1.66
Notes:	TOTAL	250 MW	363.36 GWh/yr


Notes:

- ¹Energy Density of ~1MWh/m²/month *5km length (channel width) *50m ave. depth *12 months
- ²Water-to-Wire Efficiency: 0.3 to 0.4
- ³Without detrimental environmental effects , Significant Impact Factor (SIF): 0.1 to 0.2
- Velocity Data from PORL, TMSI, NUS

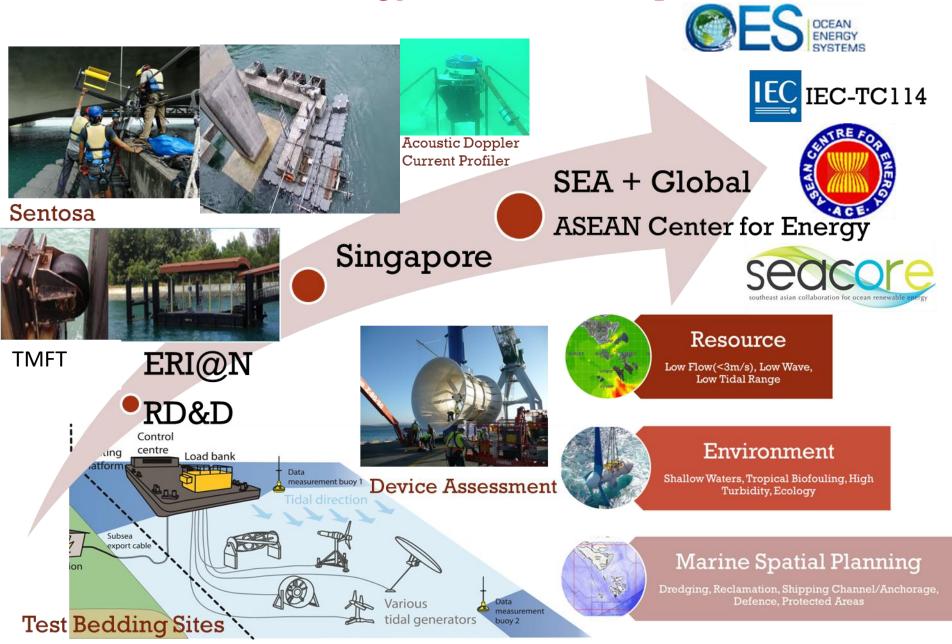
http://blogs.ntu.edu.sg/seacore/files/2014/10/singapore4.png

Wave and tidal

Sources: ¹Carbon Trust; ²CNE; ³World Bank/Bloomberg; ⁴Chilean Ministry of Energy

Marine energy markets:

LONG TERM Grid electricity



MEDIUM TERM Diesel replacement; water pumping and desalination (mines)

SHORT TERM Remote diesel replacement

Marine Renewable Energy towards the Tropics

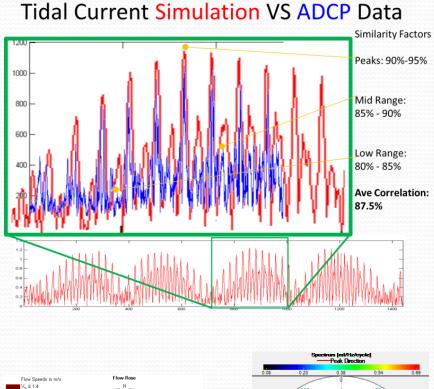
OceanPixel

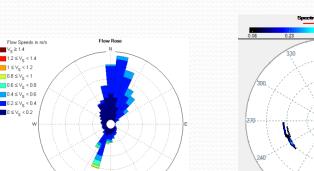
Some Costs in South East Asia

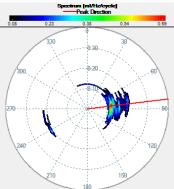
- Sinkers: $500 \text{ to } 10 \text{ vol} \rightarrow 100/\text{ton}$
- Surveys (ADCP Transect + Seabed-mounted): \$100k → \$30k-\$50k
- Barge-Based Floating Support System: $250k \rightarrow 50k$ to 100k
- Tug boats / Survey Vessels: ~\$10k/day → \$1k \$5k/day
- Feasibility Studies: \$500k-600k/site → \$150k \$300k/site
 - Environment Compliance Certificate (5MW to <100MW): \$50k-\$100k
- Deployed 2m Diameter Tidal Turbine
 - Support Structure(Floating)+Mooring+Installation = \$60k
- Piling, Crane Barges, Cabling...

Technology Zones

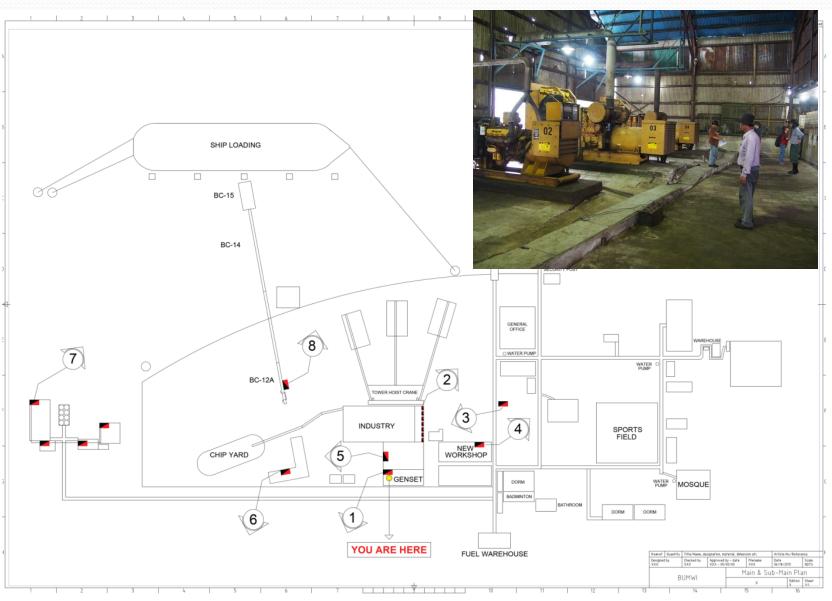
*

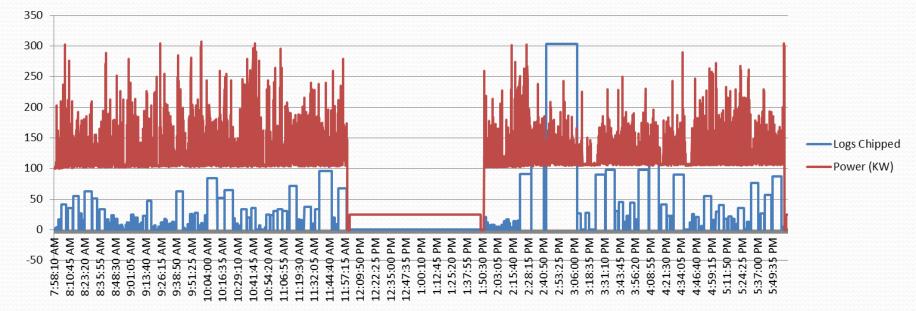


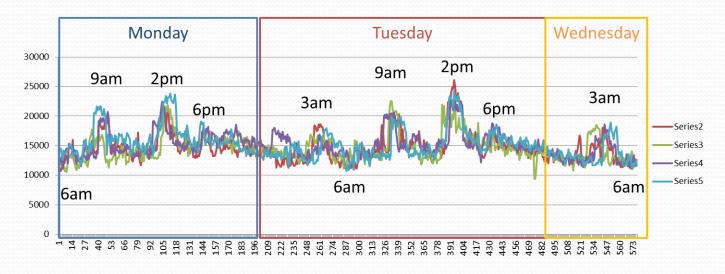

'Dry Setup', Low Risk, Easier Maintenance


Confidential

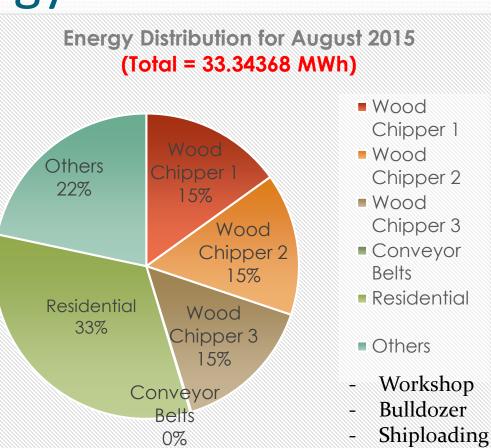
Tidal Resource Validation

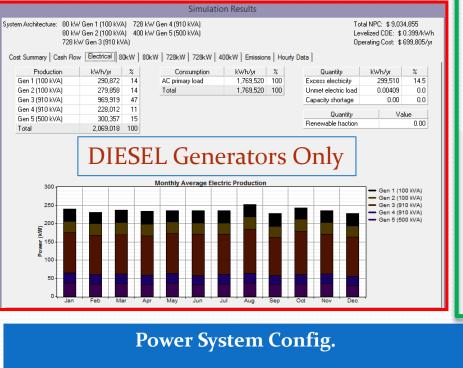


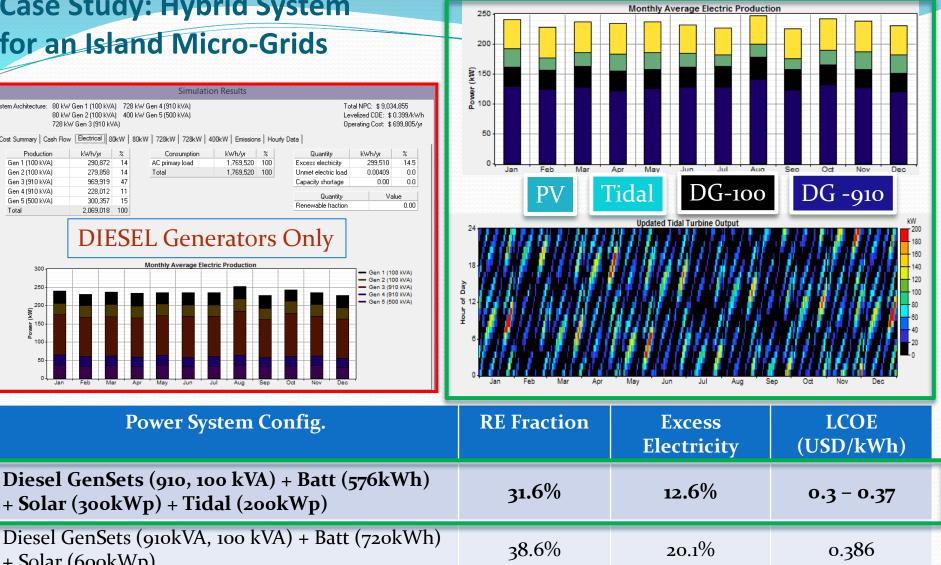

SEA Case Study: Island with Industry



The BUMWI Micro-Grid


Industrial Island Energy Use




Summary of Energy Statistics

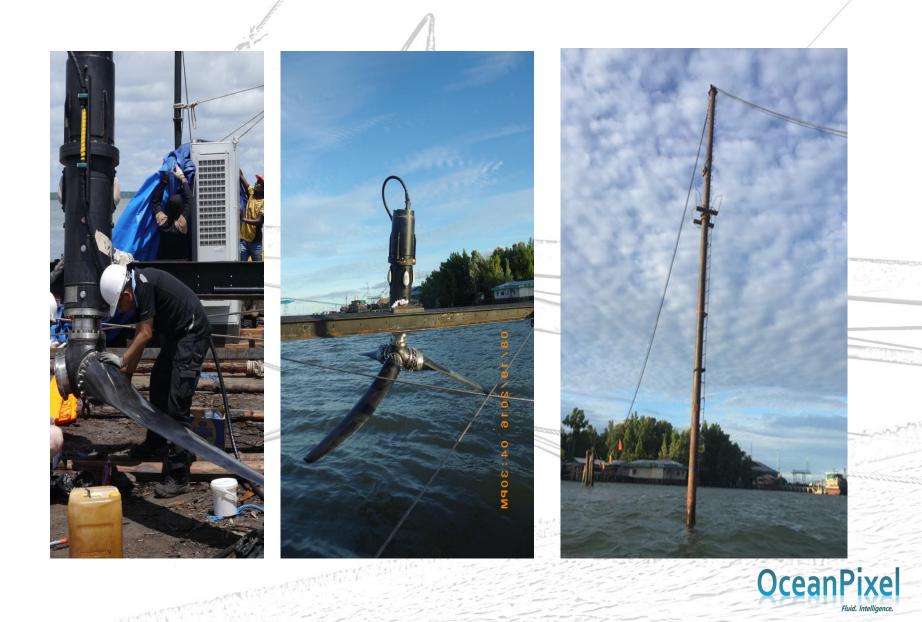
- Diesel Cost (Aug)
 - 18,800li x \$0.89/li
 - \$16,732
- Eff. Electricity Rate:
 - \$0.5/kWh
- Electricity Costs
 - ~\$7,563 Industry
 - ~\$5,502 Residential
 - ~\$3,667 Others
- Electricity Cost/Log: \$0.045
 - Logs/Month:~165k
 - 21 x 7,870 logs/day

2.47%

14.5%

0.0 %

0.0 %


Diesel GenSets (2x 910, 500, 100 kVA)

+ Solar (300kWp) + Tidal (200kWp)

+ Solar (600kWp)

0.456

0.50

Tidal Turbine Utility Pole

Tidal power in West Papua, Indonesia

The project was initiated by international wood product trader Green Forest with the backing of one of its sustainable product suppliers PT. Bintuni Utama Murni Wood Industries (BUMWI). This Indonesian leadership team collaborated with international marine energy experts to create an integrated project delivery team. Green Forest provided overall project management, BUMWI provided all site support including fabrication, lifting and boat services as well as the turbine operating team. Ocean Pixel led the demand analysis and resource assessment works, Schottel provided the turbine and technical assistance for commissioning, Aquatera provided marine operations management services with additional support from Orcades Marine and Green Marine and Nanyang Technological University provided additional naval architecture and engineering design support. The project approach combines appropriate technology with local content and know-how.

The tidal turbine is suspended below a floating barge in a simple and robust arrangement which allows for straightforward inspection and maintenance and can be easily replicated.

The project has proven the capability of a multi-company team to develop, implement and successfully deploy a tidal turbine in one of the most remote and areas of Indonesia.

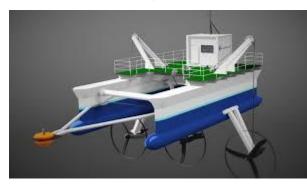
The installation of Schottel Hydro's 50kW turbine in West Papua is a significant step on the journey to use marine renewables to de-carbonise energy supplies across the region.

BUMWI's mangrove chipping operation in West Papua is the first of its kind to receive sustainability certification from the Forestry Stewardship Council (FSC[®]).

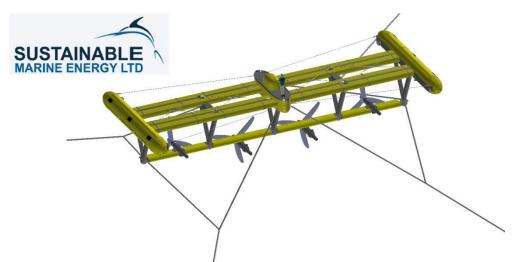
The carbon footprint of the plant is now set to be reduced by harnessing power from nearby tidal currents.

The BUMWI facility is located on the southern side of Bintuni Bay, West Papua, Indonesia

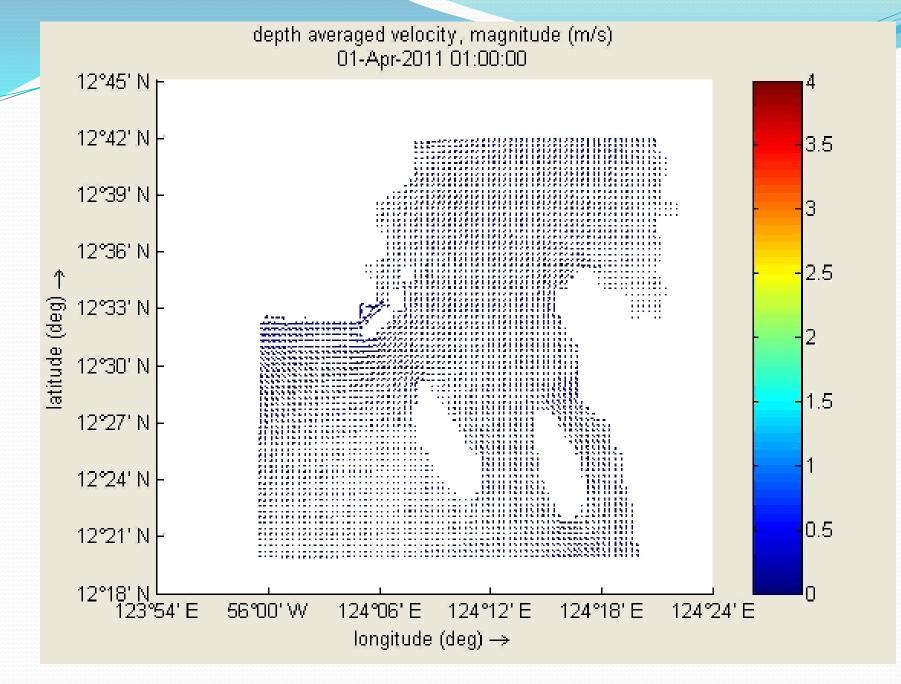
Tidal power in West Papua, Indonesia

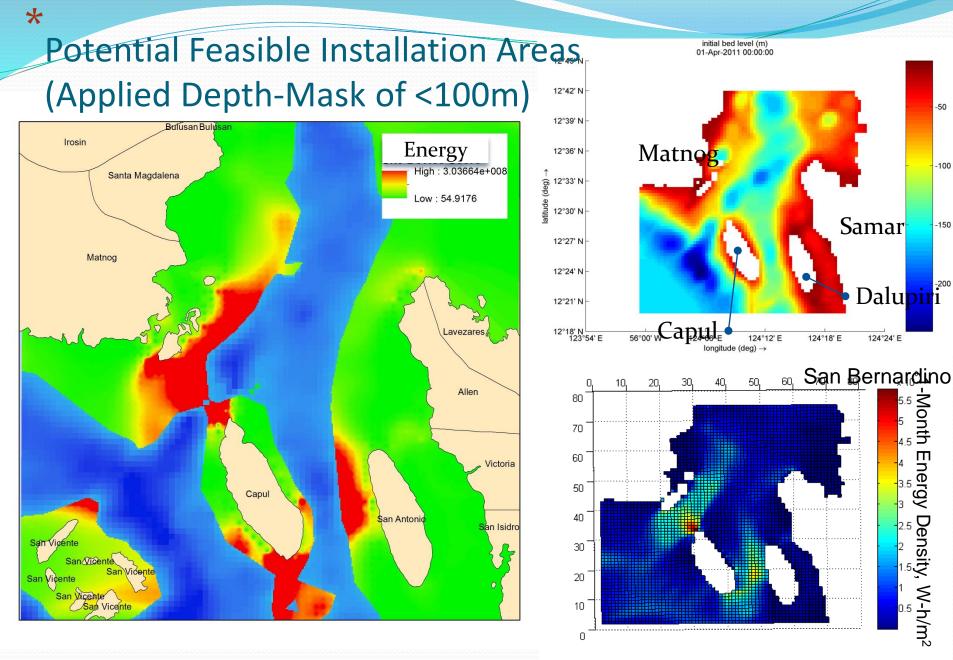

PT. Bintuni Utama Murni Wood Industries (BUMWI)

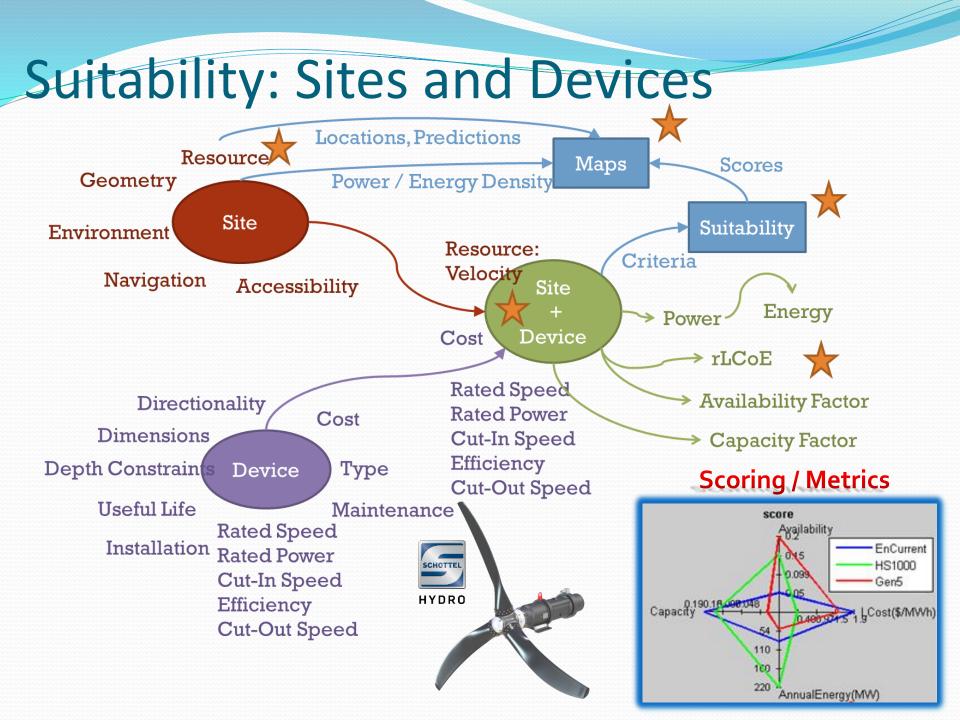
Source: Google Maps


Floating Hybrid RE Platforms?

Title: TIDAL IN-STREAM ENERGY DEMONSTRATION IN SG (50kW)


Client: Envirotek Pte Ltd Collaborators: Schottel Hydro, OceanPixel, LitaOcean, Sentosa, Aquatera, Orcades Marine, ITP, Braemar Offshore Start: November 2015 Deployment: February 2017 End: -





LCOE, IRR, Feed-in-Tariff

	Total Project (20-Years)								
100 MW	~USD 3	378M	~USD 5	560M	~USD 984M				
	CapEx = \$ 233.2M	OpEx = \$6.63M/yr	CapEx = \$ 406.5M	OpEx = \$6.63M/yr	CapEx = \$ 810.2M	OpEx = \$6.63M/yr			
FIT (PhP/kWh)	USD 2M/ MW (LCOE = \$0.11/kWh)		USD 4M/ MW (LCOE = \$0.17/kWh)		USD 8M/MW (LCOE = \$ 0.3/kWh)				
10	ROI = 95%	IRR = 14%	ROI = 32%	IRR = 6%					
	Profit = ~USD 358M	Payback = ~6.5 yrs	Profit = ~USD 177M	Payback = ~11 yrs					
13.5	ROI = 163%	IRR = 21%	ROI = 78%	IRR = 11%	ROI = 1%	IRR = 3%			
	Profit = ~USD 616M	Payback = ~5 yrs	Profit = ~USD 434M	Payback = ~7.6 yrs	Profit = ~USD 9M	Payback = ~16.2 yrs			
17	ROI = 232%	IRR = 28%	ROI = 124%	IRR = 15%	ROI = 27%	IRR = 5%			
17	Profit = ~USD 873M	Payback = ~3.5 yrs	Profit = ~USD 691M	Payback = ~6.3 yrs	Profit = ~USD 267M	Payback = ~12 yrs			

	Total Project Cost (20-Years)								
200 MW	~USD 753.5M		~USD 1,1	.17.3M	~USD 1,966.3M				
	CapEx = \$ 465.3M	OpEx = \$13.25M/yr	CapEx = \$ 811.8M	OpEx = \$13.25M/yr	CapEx = \$ 1,620.3 M	OpEx = \$13.25M/yr			
FIT (PhP/kWh)	USD 2M/ MW (LCOE = \$0.11/kWh)		USD 4M/ MW (LCOE = \$0.17/kWh)		USD 8M/MW (LCOE = \$ 0.3/kWh)				
10	ROI = 95%	IRR = 14%	ROI = 35%	IRR = 6%					
10	Profit = ~USD 718M	Payback = ~6.5 yrs	Profit = ~USD 354M	Payback = ~11 yrs					
13.5	ROI = 164%	IRR = 21%	ROI = 78%	IRR = 11%	ROI = 1%	IRR = 3%			
	Profit = ~USD 1,233M	Payback = ~4.5 yrs	Profit = ~USD 869M	Payback = ~7.6 yrs	Profit = ~USD 20M	Payback = ~16.2 yrs			
17	ROI = 232%	IRR = 28%	ROI = 124%	IRR = 15%	ROI = 27%	IRR = 5%			
	Profit = ~USD 1,748M	Payback = ~3.5 yrs	Profit = ~USD 1,384M	Payback = ~6.3 yrs	Profit = ~USD 535M	Payback = ~12 yrs			

╏╸╣╸

OceanPixel

Data Analytics, Intelligence, Suitability, Decision Support

12.65 RTT 2000

12.5 12.45

> 12.4 12.35

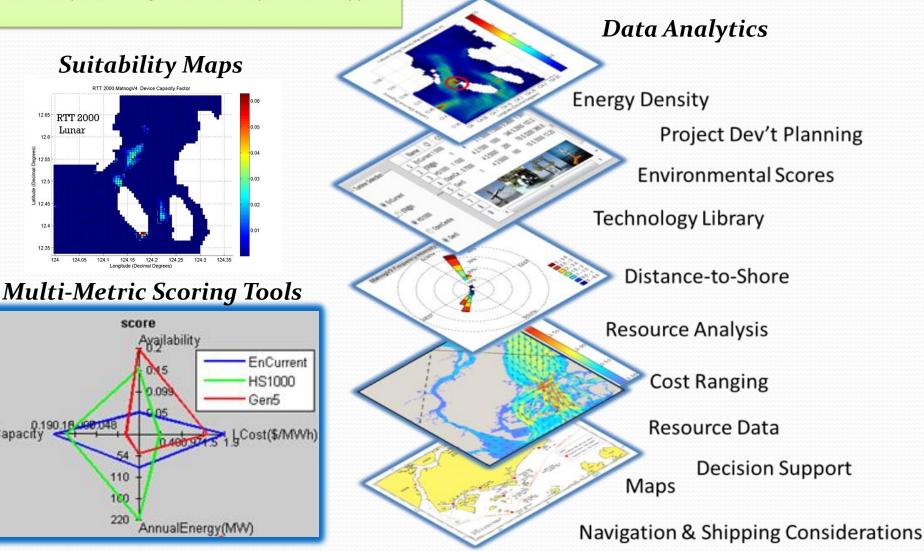
Capacit

Lunar 12.6 5 12.55

124.05

124.1 124.15 124.2 124.25

0.099


05

score

110

Multi-Site, Multi-Device, Multi-Criteria

Geographic Information System

Summary / Conclusions

- There are Marine Renewable Energy Resources in SEA
- Unique ecosystem in SEA will (hopefully) increase the uptake of marine renewables in the region
- Need for actual projects beyond R&D in SEA...
- Project Pathways may take different forms: from community-scale to commercial grid-connected projects.
- Progressive Development of Sites (Phased Approach) seems to be an attractive strategy for developers

Thank you.

mike@oceanpixel.org +65 9066 3584

Unit #02-15 CleanTech One Bldg. 1 CleanTech Loop, Singapore 637141

HYDRO

Energy Research Institute @ NTU

