ASIA CLEAN ENERGY FORUM 2016

Asian Development Bank, Manila, Philippines $05^{th} - 08^{th} \text{ June 2017}$

Track: Innovations in Energy Efficiency

Session: High Impact Energy Efficiency Policies for NDCs

Role of Energy Efficiency in the Transport Sector NDCs of Sri Lanka

Thusitha Sugathapala
Department of Mechanical Engineering
University of Moratuwa

06th June 2017

INTRODUCTION

Transport Sector in Sri Lanka

Dominated by road transport

140 billion passenger-km per year

√ 94.0% road; 6.0% rail

Contribute to 40% of the GHG emissions

Road Transport:

Active fleet: 5.0 Million

Modal share (% of passenger km)

Public: 55.2% Private: 44.8%

INTRODUCTION

Demand Growth

About 2.5% annual growth is expected during next 15

- Contribution from public transport is predicted to decrease continuously from 55% to below 50% by 2030
 - ✓ This will have adverse impact on overall energy efficiency and emissions in the transport sector.

TRANSPORT SECTOR NDCs OF SRI LANKA

An Overview

Intended Nationally Determined Contributions (INDCs)

- ✓ As with other member countries of UNFCCC, Sri Lanka has consented to publishing its INDCs as a strategic document to contribute to the mitigate the rise of global temperature.
- ✓ First version was submitted in October 2015, followed by an improved version in April 2015.
- ✓ Subsequently, NDCs of Sri Lanka were prepared covering 14 sectors based on the Readiness Plan 2017-2019 for the Implementation of INDCs, and submitted in September 2016.
- ✓ Transport is one of the key sectors.

NDCs in the Transport Sector

- ✓ A target of reducing GHG emissions by 10% against business-as-usual (BAU) scenario.
- ✓ There are 11 categories of activities proposed, which are formulated under 8 strategic policy elements.
- ✓ Covers all modes of transport: Road, Water/Sea and Air.

TRANSPORT SECTOR NDCs OF SRI LANKA

Role of Energy Efficiency

Key Strategies

- ✓ System-efficiency improvements,
- ✓ Trip-efficiency improvements,
- ✓ Vehicle-efficiency improvements.

Key Interventions

- ✓ Policy, regulatory, institutional frameworks and information management,
- ✓ Public/mass transport (Bus, Rail and Rapid Transit Systems),
- ✓ Clean and Efficient Vehicle Technologies: Electric/Hybrid vehicles; railway electrification,
- ✓ Vehicle emission standards / Fuel economy standards,
- ✓ Non-motorized transport systems,
- ✓ Inland water transport systems,
- ✓ Transport demand management (use of ICT; avoidance/reduction)

Key Indicators

Expressed by fuel economy

- ✓ Average fuel volume or energy per unit distance (I/100 km, MJ/km)
- ✓ Average fuel volume or energy input per unit passenger-distance (I/100 passenger-km, MJ/passenger-km)
- ✓ Could represent a certain class/category of vehicles/fleet or whole fleet/transport sector.

GHG Emissions

- ✓ Based on the fuel economy, GHG emissions could also be estimated.
- ✓ GHG intensity is expressed in mass of CO₂ per unit distance or per unit passenger-distance (g CO₂/km, g CO₂/passenger-km)
- ✓ Average fuel volume or energy input per unit passenger-distance (I/100 passenger-km, MJ/passenger-km)
- ✓ Simple relations are available for converting fuel economy to GHG emissions, which depend on the type of fuel (diesel / petrol).

- Impacts of Hybrid Vehicles
 - Emergence of hybrid/electric cars in Sri Lanka

Impacts of Hybrid Vehicles

- Overall Impacts of NDCs (2020 to 2030)
 - Transport demand pattern

Passenger km (Billion)

Public transport share is improved to maintain at 62%

- Overall Impacts of NDCs (2020 to 2030)
 - Share of public transport

Shift of passengers from private to public transport modes

2020: 5.6%; 2025: 7.4%; 2030: 12.4%

- Overall Impacts of NDCs (2020 to 2030)
 - Achievements by 2030

	Transport Demand (Billion Passenger- km)	Annual fuel demand (Million liters)	Fuel Economy		GHG Emissions	
Scenario			I/Passenger-km	MJ/ Passenger- km	Intensity (g/Passenger -km)	Total (k tons/ year)
BAU	194.3	4738.4	0.024	0.95	59.7	11605.9
Mitigation	187.0	3838.1	0.021	0.79	51.0	9543.4
Improvements /Savings (%)	-	19.0	15.8	16.1	14.6	17.8

CONCLUSIONS

- The implementation of transport sector NDCs could results in considerable reduction in GHG emissions with respect to BAU scenario, even well above the stipulated target of 10%.
- However, successful implementation of the mitigation actions requires transformational change of the sector governance; particularly related to policy, regulatory, institutional frameworks and information management.
- The anticipated levels of stakeholder engagement and resource mobilization for the NDC Readiness Action Plan 2017-2019 is not visible yet; challenging the effective commencement of the implementation in 2020.

Thank You