Green Energy Finance

ACEF Deep Dive Workshop

Volker Bromund, 5th / 6th June 2017

Supported by: Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety

based on a decision of the German Bundestag

www.renac.de

1. Introduction to the Green Banking Programe

09:00 - 09:30h, speaker: Octavio B. Peralta (ADFIAP)

2. Introduction to Wind Energy

09:30 - 09:50h, speaker: Pramod Jain, (Innovative Wind Energy, Inc.)

3. Project Structure and Financing Sources for Wind Farms

09:50 - 10:30h, speaker: Volker Bromund (RENAC)

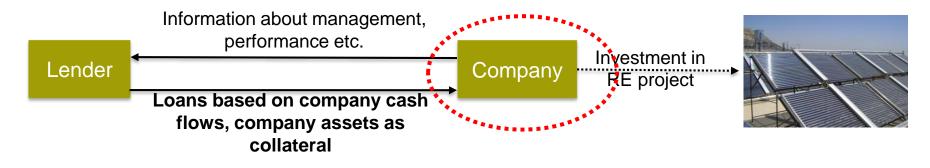
4. Wind Farm Cash Flow Planning Case Study

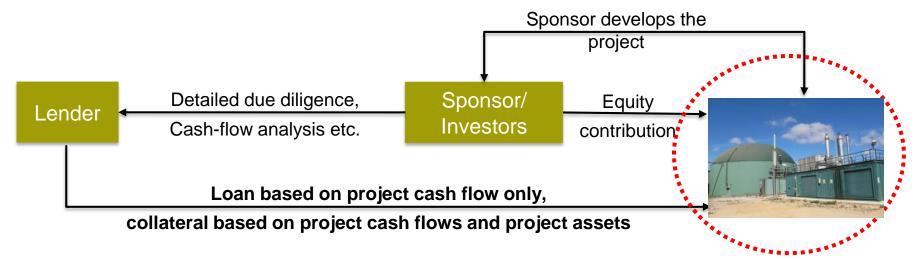
11:00 – 11:45h, speaker: Volker Bromund (RENAC)

5. Panel Discussion: "Changing Landscape of Wind Energy Tariffs"

11:45 – 12:30h, chair: Pramod Jain, (Innovative Wind Energy, Inc.)

Project structure and financing sources for wind farms




- Three types of financing typically used for RE projects
 - Corporate Finance
 - Project Finance
 - Capital Market Finance
- Different markets have different financing standards
- The decision for a financing form typically depends on the maturity of
 - the financial sector
 - the energy market
 - project developer's experience

Corporate Finance (on-balance lending)

Project Finance (off-balance lending)

	Corporate Finance	Project Finance
Loan paid back by the	Sponsoring company	Cash flows generated by project
Liability	The sponsor may / must tap all possible sources of liquidity	The liability of the company comprises only the equity invested in the project
Bank's DD focus	Last year's balance sheet, P&L statement, company strategy and market development	Expected cash flows and risks of project
Bank decision depends on the	Creditworthiness of the sponsor	Volume, reliability and projectability of the project's future cash flows

- **Project Finance** without / with limited recourse to the sponsor
 - Project debt is provided by banks and other financial institutions, project equity is paid-in by the sponsor(s) or external Investors
 - The project's creditworthiness and debt capacity exclusively depends on the project cashflows
 - "Non- or limited recourse"- financings without or with limited recourse to the sponsor's balance sheet
 - <u>Characteristics</u>: requires stable, forecastable project cash flows, ideally from a reliable public support scheme (e.g. feed-in tariff) or a long-term power purchasing agreement, "growth engine" for green energy markets in many developed countries, knowledge-intensive, transaction costs can be high
- → The broad access to non-recourse Project Finance forms the "financial foundation" of the unprecedented RE success story in Germany!
- → It enables not only big corporates, but especially SMEs to carry out sizeable projects without requiring strong balance sheet support

Technical Risks

Construction Risk

Operation & Maintenance

EPC Contractor

Manufacturer

Technology Risk

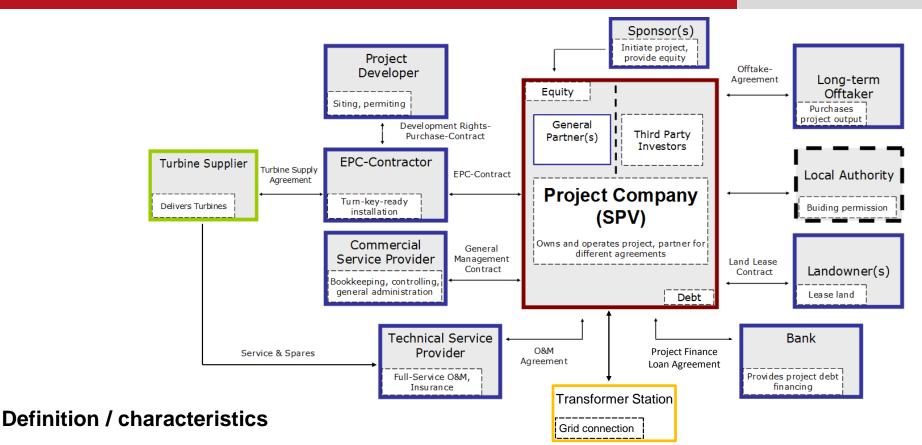
Proven Technology

Financial Risks

Resource Risk

Availability (resource study e.g. on wind availability) Country Risk

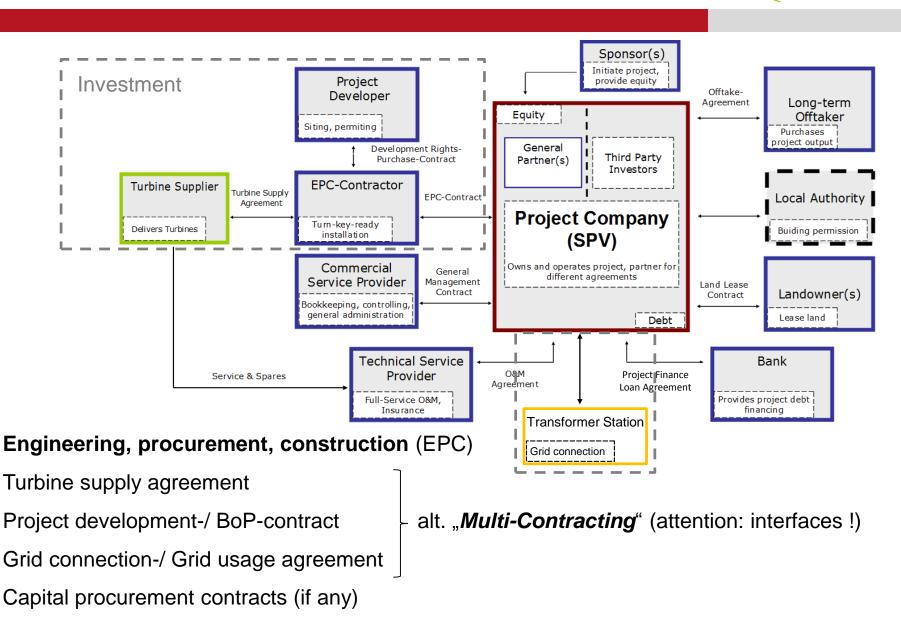
Insurance


Market Risk

- Feed in Tariff

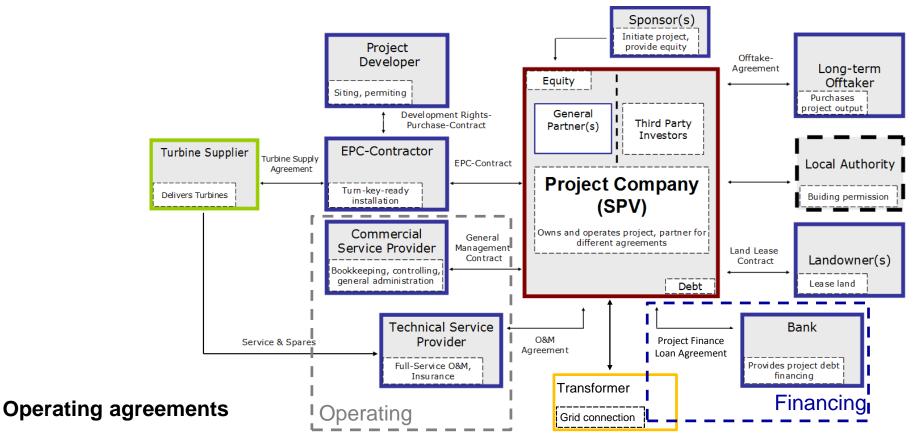
- Price of resource

RE – project finance structure



- Legally-independent project company
- Cash flow of the project is the main source of collateral and loan repayment
- Long-term contractual relationship
- Higher degree of leverage compared to corporate finance

Contracts in the investment phase


renewables academy

Contracts in the operating phase

- Offtake-agreement / PPA
- Land rights contracts
- O&M-/ operating agreements
- Insurance contracts

Financing agreements

- Project finance loan agreement
- Shareholder agreement

Wind farm cash flow planning case study

- Super Wind Investor Ltd. ("SWI") got the opportunity to acquire a used Vestas V44 600kW turbine that has been installed in Northern Germany 14 years ago.
- The turbine is operating under the German renewable energy feed-in tariff scheme (EEG–Renewable Energy Act) which is remunerating the turbine for a period of at least 20 years from the commissioning date.
- SWI can operate the turbine for at least 6 additional years under the same conditions as before (same feed-in tariff).
- SWI considers an investment under the pre-condition that it can raise a bank loan for co-financing.
- Turbine acquisition date shall be 01 January 2017.
- Let's show SWI how to evaluate the project from a banker's perspective!

Overview of project input parameters

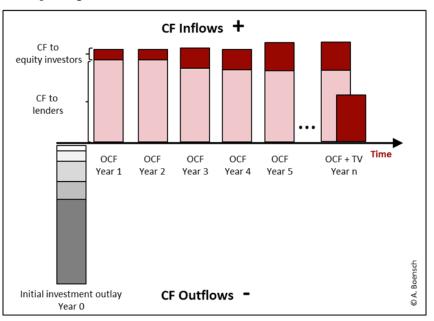
- Turbine purchase cost: EUR 230,000
- <u>Average historic energy production</u>: 1,100 MWh p.a.
 - Availability losses: 5.0% p.a.
 - Electrical losses: 2.0% p.a.
- Feed-in tariff: EUR 91 / MWh until 31 December 2022 (for 6 years)
- Operating cost per year:
 - O&M contract Vestas:
 - Caretaker / maintenance man:
 - Electricity consumption cost:
 - Land leases:
 - Insurance cost:
 - Accounting / annual report:
 - Dismantling cost:

- EUR 20,000, indexed with 2.0% p.a.
- EUR 2,400, indexed with 2.0% p.a.
 - EUR 1,200, indexed with 2.0% p.a.
 - 8.0% of the electricity revenues
 - EUR 2,200, indexed with 2.0% p.a.
 - EUR 1,500, indexed with 2.0% p.a.
 - EUR 40,000, accumulated in years 5 & 6

-

11

18-1


Cash flow estimation

Principle of Cash Flow (CF) planning

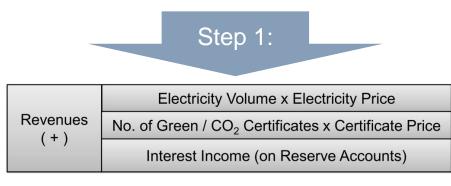
- Initial investment outlay. The upfront cost of the renewable energy technology and all other fixed assets.
- Operating cash flows over the project life. → To be evaluated...

Case Study: Investment Cost Budget

- The total upfront investment cost for the used wind turbine is EUR 230,000.
- The investor can provide EUR 90,000 of equity.
- He needs a bank loan of

EUR 230,000 Investment

– <u>EUR 90,000</u> Equity


= EUR 140,000 Bank loan

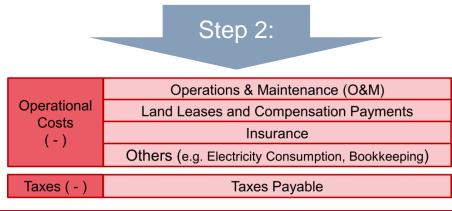
Principle of cash flow planning

Revenues	Operational Costs	Taxes	CADS
(+)	(-)	(-)	(=)

- Under the project finance approach, cash flow positions follow a hierarchy called cash flow waterfall.
- This concept requires annual revenues to cover periodical costs in a strict order.

Case study: Revenue calculation

- Annual energy production:
 - 1,100.0 MWh Gross production
 - 55.0 MWh 5.0% Availability loss
 - <u>20.9 MWh</u> 2.0% Electricity loss
 - = 1,024.0 MWh Net output
- Feed-in tariff: EUR 91.0 / MWh
- Electricity revenues p.a.: 1,024 MWh x EUR 91.0 = EUR 93,193
- No revenues for green energy certificates in Germany
- Interest income depends on reserve account size


* CADS: Cash Available for Debt Service

Principle of cash flow planning

Revenues	Operational Costs	Taxes	CADS
(+)	(-)	(-)	(=)

- Under the project finance approach, cash flow positions follow a hierarchy called cash flow waterfall.
- This concept requires annual revenues to cover periodical costs in a strict order.

Case study: operational costs, taxes

 Detailed cost schedule for all six operating years:

Year	1	2	3	4	5	6
	2017	2018	2019	2020	2021	2022
O&M Contract Vestas	20,000	20,400	20,808	21,224	0	0
Maintenance Man	2,400	2,448	2,497	2,547	2,598	2,650
Electricity Consumption	1,200	1,224	1,248	1,273	1,299	1,325
Land Leases	7,455	7,455	7,455	7,455	7,455	7,455
Insurance	2,200	2,244	2,289	2,335	2,381	2,429
Dismantling costs					20,000	20,000
Accounting	1,500	1,530	1,561	1,592	1,624	1,656
Total Operating Costs	-34,755	-35,301	-35,858	-36,426	-35,357	-35,515
Trade Tax	-6,745	-6,682	-6,617	-6,552	-6,676	-6,657
EBITDA	51,693	51,210	50,717	50,215	51,160	51,020
Income Tax	-7,936	-7,855	-7,773	-7,688	-7,833	-7,806

- All costs increase at 2% p.a., except land leases.
- O&M payments are stopped two years before the project ends.
- Taxes are calculated from P/L statement.

*EBITDA: Earnings Before Interest, Tax, Depreciation and Amortization

Case study: cash flow available for debt service (CADS)

Year	1	2	3	4	5	6
	2017	2018	2019	2020	2021	2022
Park Output Potential	1,100	1,100	1,100	1,100	1,100	1,100
Availability Losses	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%
Electrical Losses	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%
Net Output	1,024	1,024	1,024	1,024	1,024	1,024
Electricity Price	91.00	91.00	91.00	91.00	91.00	91.00
Electricity Revenues	93,193	93,193	93,193	93,193	93,193	93,193
Total Income	93,193	93,193	93,193	93,193	93,193	93,193
O&M Contract Vestas	20,000	20,400	20,808	21,224	0	0
Maintenance Man	2,400	2,448	2,497	2,547	2,598	2,650
Electricity Consumption	1,200	1,224	1,248	1,273	1,299	1,325
Land Leases	7,455	7,455	7,455	7,455	7,455	7,455
Insurance	2,200	2,244	2,289	2,335	2,381	2,429
Dismantling costs					20,000	20,000
Accounting	1,500	1,530	1,561	1,592	1,624	1,656
Total Operating Costs	-34,755	-35,301	-35,858	-36,426	-35,357	-35,515
Trade Tax	-6,745	-6,682	-6,617	-6,552	-6,676	-6,657
EBITDA	51,693	51,210	50,717	50,215	51,160	51,020
Income Tax	-7,936	-7,855	-7,773	-7,688	-7,833	-7,806
CADS	43,757	43,355	42,945	42,526	43,327	43,215

Step 4: From CADS (Cash Available for Debt Service) to ECF (Equity Cash Flow)

Principle of cash flow planning

Cash Flow Available for Debt Service (CADS)					
Debt Service	Interest Payments				
(-)	Debt Repayments				
DSRA(-)	Debt Service Reserve Account				
(=) Equity Cash Flow (ECF)					

- CADS is predominantly used to meet the project's annual debt service.
- Debt service consists of the scheduled annual interest and debt repayments.
- Debt holders usually demand an additional Debt Service Reserve Account (DSRA).
- DSRA: 6-months debt service.

Case study: Debt service

- The bank loan of EUR 140,000 is to be repaid in annual installments:
 - Year 1: EUR 20,000 → EUR 120,000
 - Year 2: EUR 40,000 → EUR 80,000
 - Year 3: EUR 40,000 → EUR 40,000
 - Year 4. EUR 40,000 → EUR
 0
- Loan tenor is usually shorter than project tenor (here: 4y < 6y)

\rightarrow risk buffer

Interest rate: 3.5% p.a.

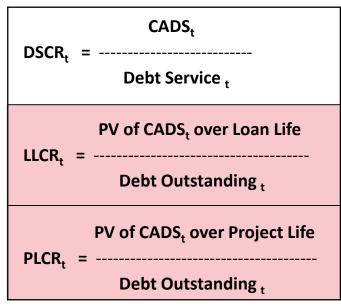
Case Study: Equity Cash Flow (ECF)

Year	1	2	3	4	5	6
	2017	2018	2019	2020	2021	2022
CADS	54,791	54,210	53,443	52,667	53,110	52,998
Redemption	-20,000	-40,000	-40,000	-40,000	0	0
Interest	-4,900	-4,200	-2,800	-1,400	0	0
Debt Service	-24,900	-44,200	-42,800	-41,400	0	0
Cash before DSRA	29,891	10,010	10,643	11,267	53,110	52,998
Cash incl. DSRA	29,891	32,110	32,043	31,967	53,110	52,998
DSRA Target	22,100	21,400	20,700	0	0	0
DSRA Actual	22,100	21,400	20,700	0	0	0
Equity Cash Flow (ECF)	7,791	10,710	11,343	31,967	53,110	52,998

- Interest rate is only applied to the outstanding loan amount.
- DSRA (*Target*) is calculated as **50%** of **next year's debt service**.
- DSRA (*Actual*) is the actual ("real") cash reserve amount that the turbine was able to accumulate in the respective period.
- Annual ECFs can be distributed to the equity investor.

Key financial project ratios

Key financial project ratios - DSCR


 The Debt Service Cover Ratio (DSCR) indicates, to what extent CADS exceeds the scheduled debt service in a given period.

Case study: DSCRs

- To calculate the DSCRs for the sample project, we divide the annual CADS by the total debt service.
 - Sample calculation for year 1:
 - DSCR₁ = EUR 54,791 / EUR 24,900
 - DSCR₁ = 2.20
- All DSCR values need to be >1 for a project to be bankable.

Key financial project ratios – LLCR, PLCR

- The Loan Life Cover Ratio (LLCR) and the Project Life Cover Ratio (PLCR) take an aggregated view on the project putting the present value (PV) of the respective CADS values into relation to the outstanding debt.
 - loan life considered for LLCR
 - project life considered for PLCR

Case study: LLCR, PLCR

• Sample LLCR calculation (year 3):

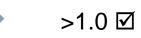
$$LLCR_3 = \frac{\frac{53,443}{1,035} + \frac{52,667}{1,035^2}}{80,000}$$

- LLCR₃ = 1.26
- Sample PLCR calculation (year 3):

• PLCR₃ =
$$\frac{\frac{53,443}{1,035} + \frac{52,667}{1,035^2} + \frac{53,110}{1,035^3} + \frac{52,998}{1,035^4}}{80,000}$$

- PLCR₃ = 2.44
- LLCR >1: project surpluses more than sufficient to cover aggregate debt service over the loan life.
- PLCR shows additional potential to stretch tenors in case a loan restructuring is needed.

Evaluation of case results


Case study: Overview of all project ratios

Year	1	2	3	4	5	6
	2017	2018	2019	2020	2021	2022
CADS	54,791	54,210	53,443	52,667	53,110	52,998
Redemption	-20,000	-40,000	-40,000	-40,000	0	0
Interest	-4,900	-4,200	-2,800	-1,400	0	0
Debt Service	-24,900	-44,200	-42,800	-41,400	0	0
Cash before DSRA	29,891	10,010	10,643	11,267	53,110	52,998
Cash incl. DSRA	29,891	32,110	32,043	31,967	53,110	52,998
DSRA Target	22,100	21,400	20,700	0	0	0
DSRA Actual	22,100	21,400	20,700	0	0	0
Equity Cash Flow (ECF)	7,791	10,710	11,343	31,967	53,110	52,998
DSCR	2.20	1.23	1.25	1.27	n/n	n/n
LLCR	1.41	1.25	1.26	1.27	n/n	n/n
PLCR	2.04	2.01	2.44	3.71	n/n	n/n

All minimum values observed in year 2.

>1.5 🗹

Key results of ratio analysis						
Ø-DSCR	1.49	Ø-LLCR	1.30	Ø-PLCR	2.55	
Min-DSCR	1.23	Min-LLCR	1.25	Min-PLCR	2.01	

Project looks financially feasible from a lender's perspective!

>1.0 🗹

Thank you!

Renewables Academy (RENAC)

Schönhauser Allee 10-11 D-10119 Berlin Tel: +49 30 52 689 58-85 Fax: +49 30 52 689 58-99 boensch@renac.de IIII renac renewables academy

www.renac.de

