

June 5 to 8, 2017 Manila, Philippines

Ecological Application Strategies of Photovoltaic System

June 6, 2017

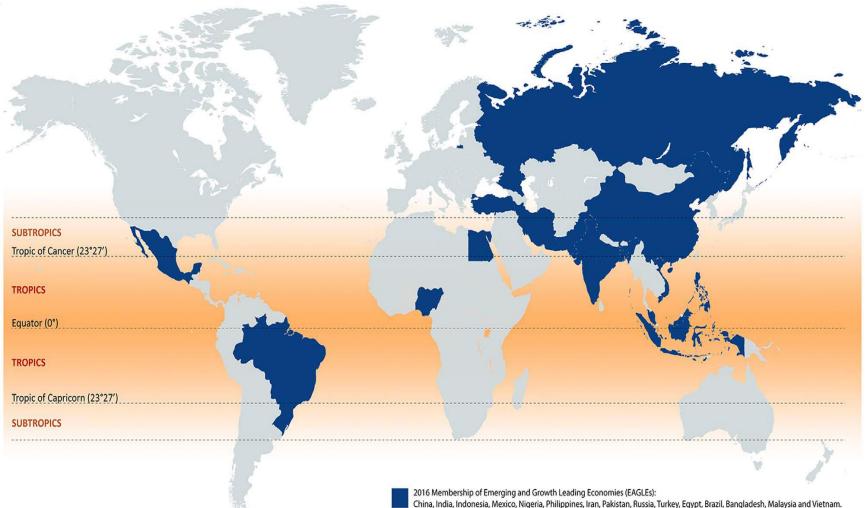
Seung-Ho Yoo

Prof. Dr.-Ing./Chair of Renewable Energy Institute Sehan University, Republic of Korea E-Mail: ENERGY@UNITEL.CO.KR

Contents

- Building energy consumption & photovoltaic
- Photovoltaic & environment friendliness
- Heating & cooling load of building in Mega city
- Definition of solar architecture
- Cultural & regional composition
- Ecological view of architecture
- A model simulation for a solar architecture
- Evaluation standard for solar architecture
- Conclusions

Energy consumption and Photovoltaic(PV) harvesting


- Buildings give a severe influence in worldwide energy consumption compared to the other economic sectors (Industry and Transportation).
- Building portion (PV harvesting) to total energy consumption.
 - EU : 40-45 % (PV?) Korea: 25 % (PV?) USA : 50 % (PV?)

Why an ecological application strategies ?

Building Cooling load in EAGLEs & their relative location

compared to tropical and subtropical zones

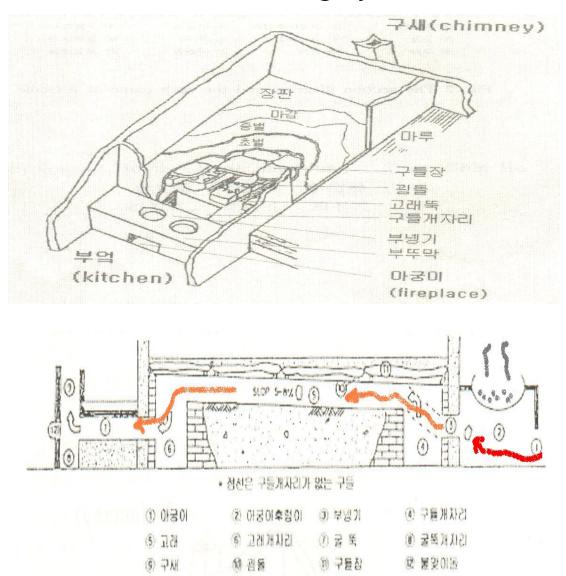
China, India, Indonesia, Mexico, Nigeria, Philippines, Iran, Pakistan, Russia, Turkey, egypt, brazil, bangladesh, Malaysia and Vietna

(BBVA. Emerging and Growth Leading Economies (EAGLEs). Economic Outlook. Annual Report 2016. BBVA; 2016.)

Sehan University/Seung-Ho Yoo/Prof.Dr.-Ing.

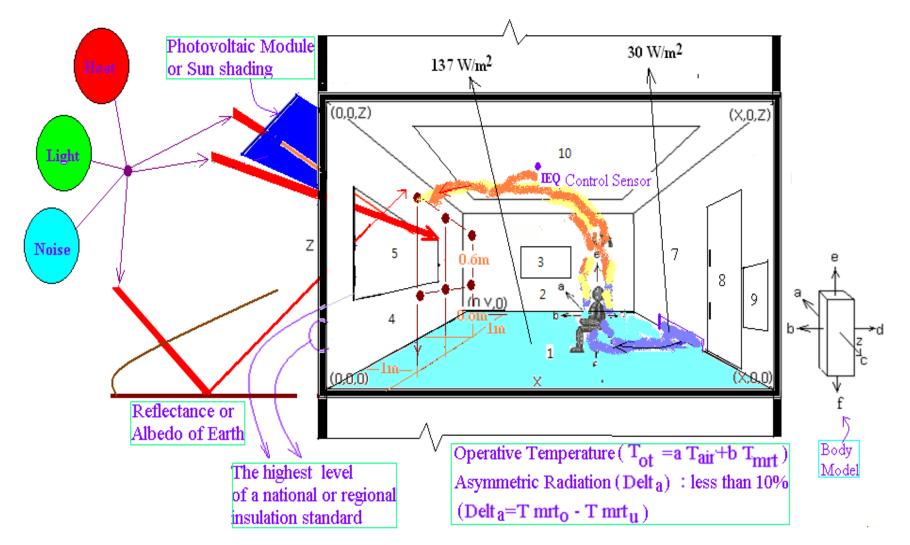
Cultural & Regional Composition

Cultural & Regional Composition (Yang-o-dang, Jooiljae(1650-1706)(Family Ryoo's grand son,s house , Hahoi Village/Kyungsang province)

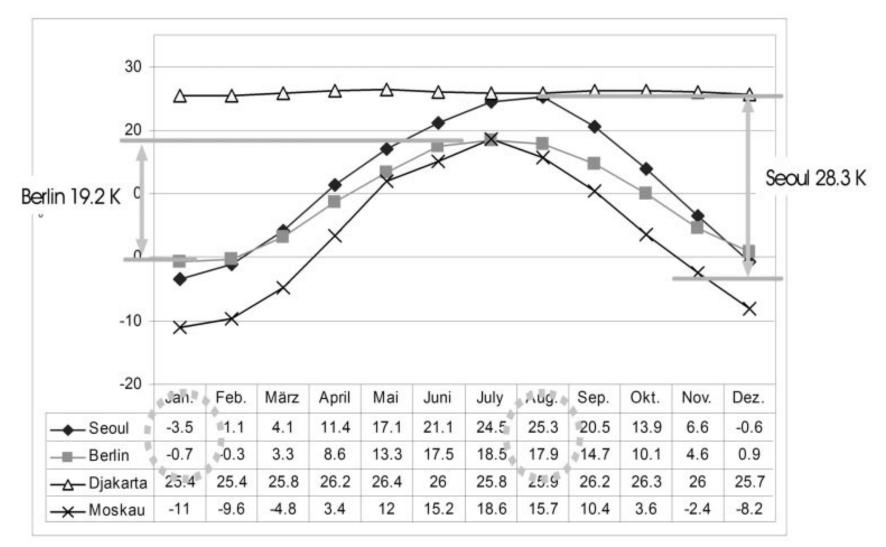

Seasonal correspondence by the principle of Eaves. High albedo(reflectance) of front yard

06/06/2017

Insulation, transmittance, Humidity control properties of building envelope(Transparent or opaque) Thermal comfort and energy saving through "Ondol"(floor) heating system.

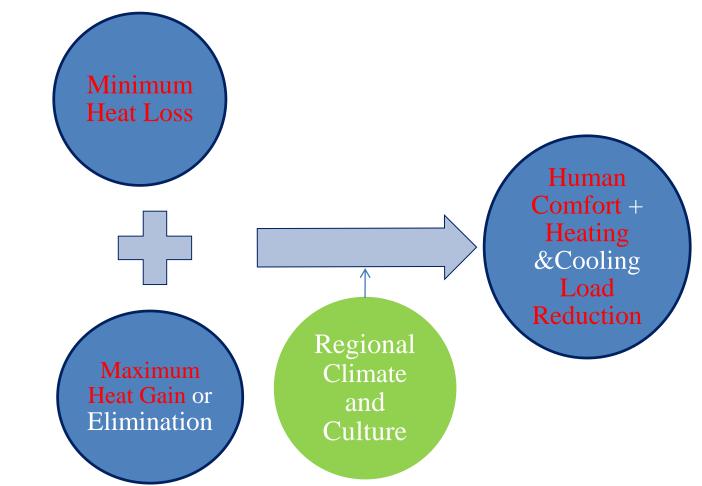

Sehan University/Seung-Ho Yoo/Prof.Dr.-Ing.

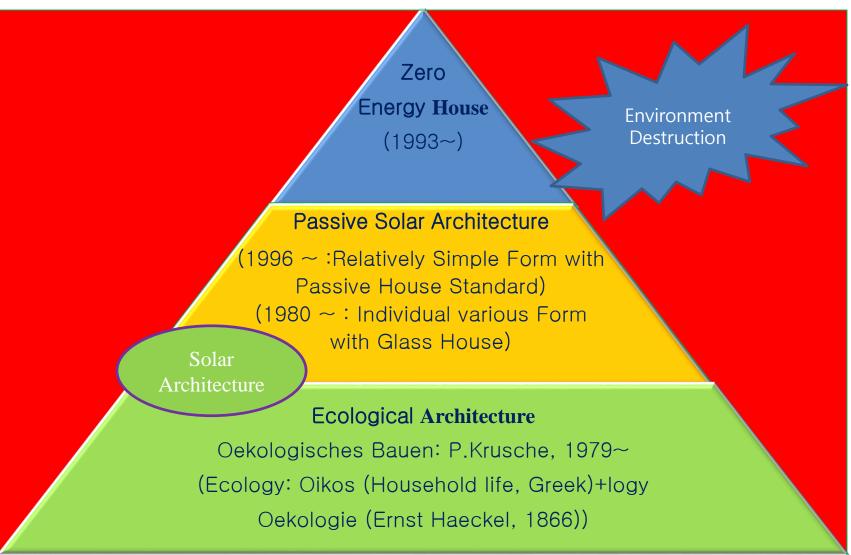
Traditional floor heating system in Korea


A Concept of Solar Architecture

(Ecological Fusion of Passive Solar Architecture and Photovoltaic System)

Sehan University/Seung-Ho Yoo/Prof.Dr.-Ing.

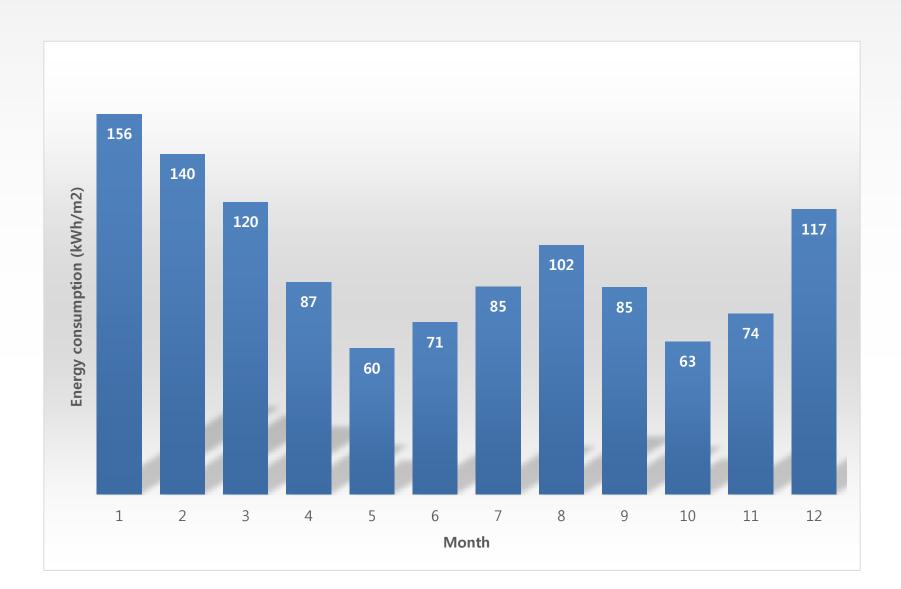

Climate Composition (Berlin/Seoul/Djakarta/Moskau)


06/06/2017

Principle of Solar Architecture -Cultural Composition -

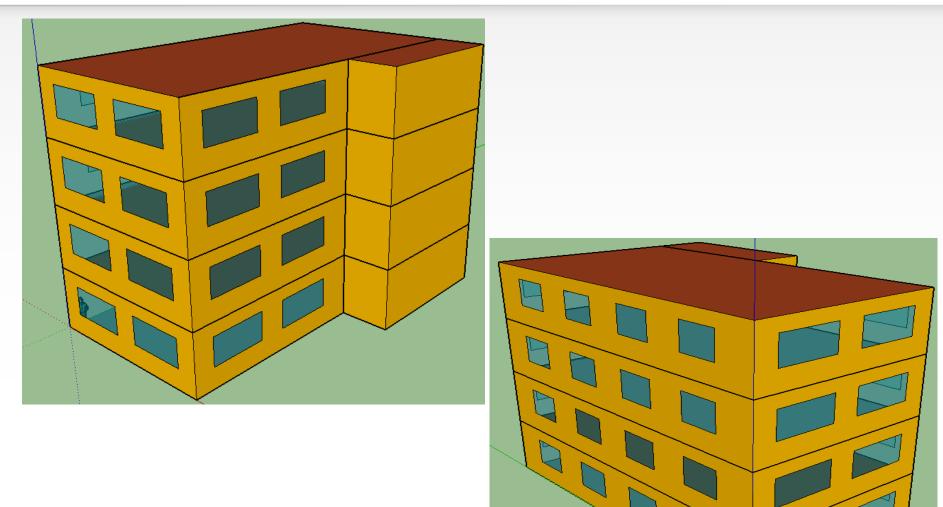
• Basic Principle:

Ecological Hierarchy of Architecture



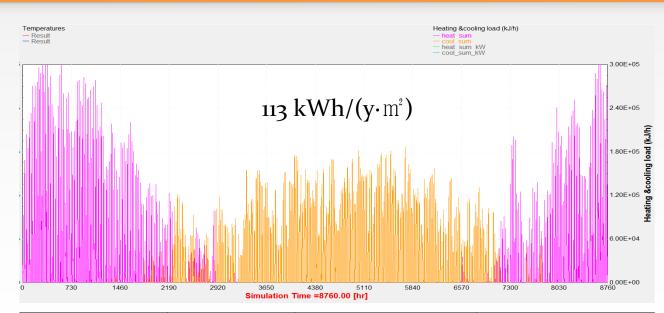
Sehan University/Seung-Ho Yoo/Prof.Dr.-Ing.

06/06/201/


Average Energy Consumption in a Mega city

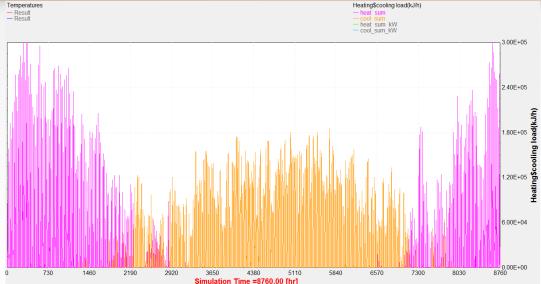
-Example of 17 community center in Seoul, Korea (2014)-

Simulation model for energy conservation (Seokkwan community center)


- East/south view (left) and south/west view (right) -

Remodeling simulation model for energy conservation (Seokkwan community center) - Building material, area, room load -

		Thermal transmittance				Area	(m ²)
		(W/m²k)	(W/m²k) 1 st flo			17	0
Out	er wall	0.45	2 nd floor		170		
F	Roof	0.3		3 rd floor		17	0
Wi	indow	5.68 (g값: o.855)		4 th floor		17	0
				하		68	60
Curt	ain wall	0.5					
		Number of people(changeable	2)	LED	Fluore	escent light	
	1 st floor	20(100)		26		14	
	2 nd floor	7(20)		0		30	
	3 rd floor	0(50)		0		30	
	4 th floor	0(50)		0		30	
	계단	o(6o)		0		30	
	계	22(200)		105		11	
		15					


Remodeling simulation for energy conservation (Seokkwan community center) - with room load , all year round-

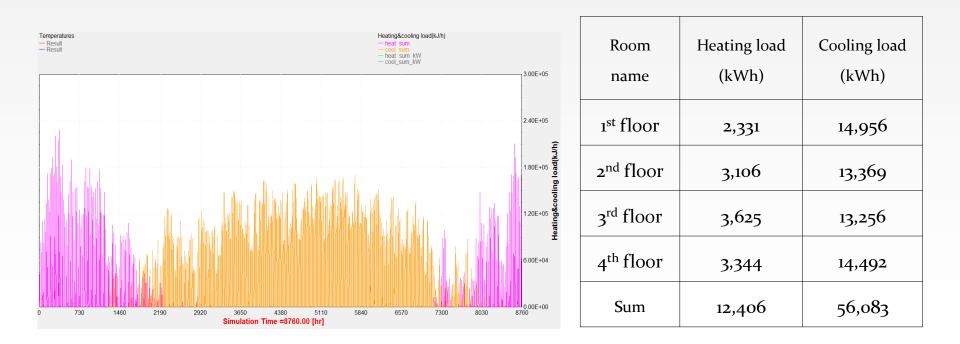
Room name	Area(m2)	Heating load (kWh)	Cooling load (kWh)
1 st floor	170	7,758	11,069
2 nd floor	170	8,683	10,128
3 rd floor	170	9,167	10,203
4 th floor	170	8,072	11,678
Sum	680	33,694	43,083

Remodeling simulation for energy conservation (Seokkwan community center)

- Increased insulation for outer wall (0.45 -> 0.22)

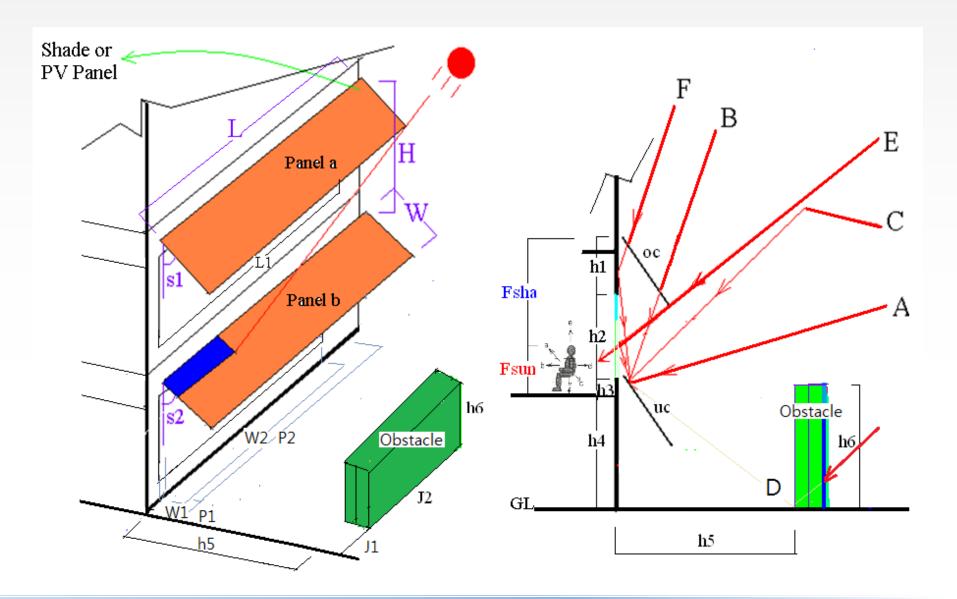
Room name	Area(m2)	Heating load (kWh)	Cooling load (kWh)		
1 st floor	170	6,856	11,606		
2 nd floor	170	7,786	10,592		
3 rd floor	170	8,294	10,644		
4 th floor	170	7,314	12,111		
Sum	680	30,250	44,944		

After double of wall insulation (0.45 -> 0.22)

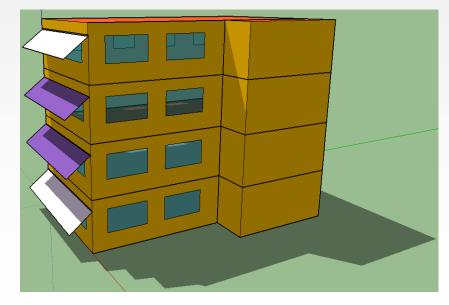

Heating load: 33,694 kWh -> 30,250 kWh (10%) decrease

Cooling load: 4,3083 kWh -> 44,944 kWh (4%) increase

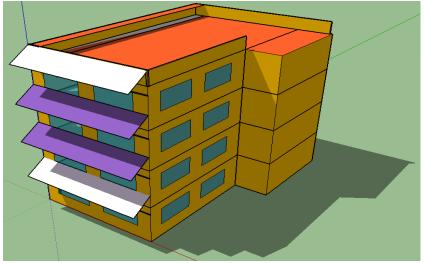
Total: 2% decrease


Remodeling simulation for energy conservation (Seokkwan community center)

- Change of window (U: 5.68 W/m²K (g: 0.855) -> Kripton gas window (U: 0.86W/m²K (g-Value: 0.598))

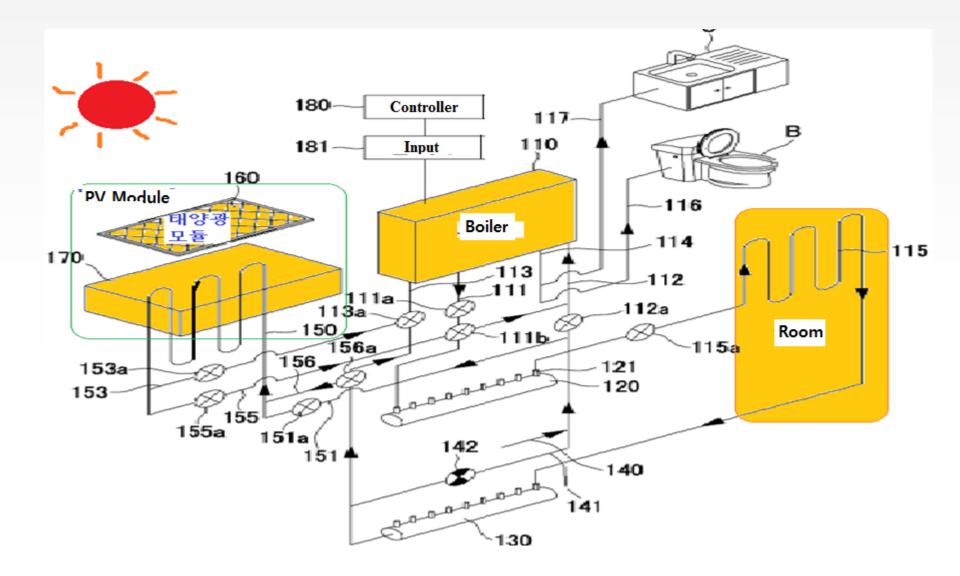

After replace of window: Heating load: 63% decrease Cooling load: 23% increase Total: 10% decrease

Remodeling application and evaluation by the use of photovoltaic module

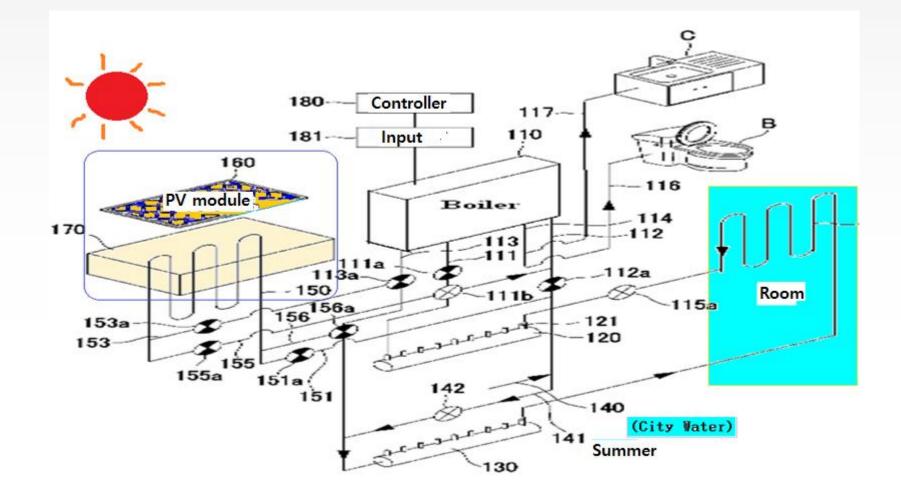


Remodeling simulation model for energy conservation (Seokkwan community center)

- with argon gas window and photovoltaic module as a shading device -



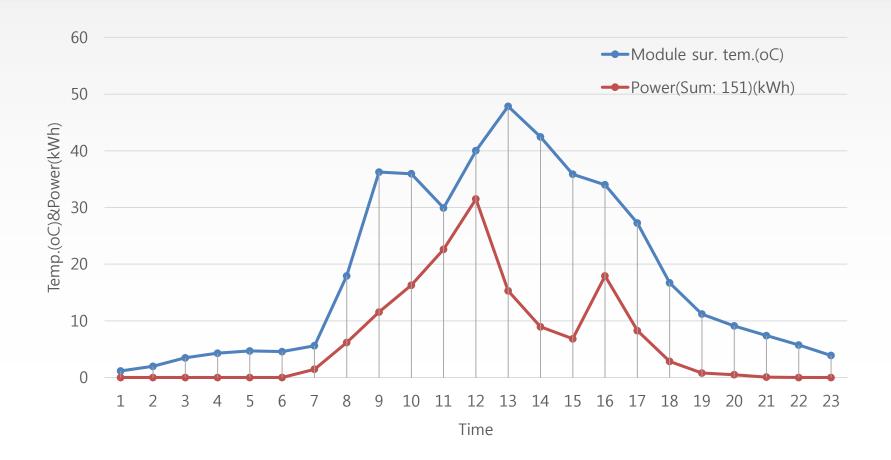
실명	Cooling load(kWh) (shading coef.:1.0)	Cooling load(kWh) (shading coef.:0.7)
心	9,317	10,331
2층	8,269	8,978
3 ^초	8,992	9,192
4 ^초	8,969	9,533
합계	35,556	38,028



After high insulation window: Heating load: 33,694 kWh-> 12,406 kWh (63%) decrease, with outer shading: cooling load 43,083kWh ->38,028 kWh(shading coef. :0.7), 35,556 kWh (shading coef.: 1) decrease Therefore, Totally 76,777 kWh-> 47,962 kWh(shading coef: 1), 50,434 kWh(shading coef.:0.7), respectively 38% and 34% energy conservation

Ecological convergence of photovoltaic system and cooling&heating system[Heating period]

Ecological convergence of photovoltaic system and cooling&heating system[cooling period]


Community center integrated photovoltaic (Anam-Dong, PV on roof top, inside)

Ecological convergence of photovoltaic system and cooling&heating system[Photovoltaic]

Photovoltaic system as a shading device in conjunction with Heating & cooling system PV power: 134 kWh -> 151 kWh (11.3% increase) Payback period: 5 year

Evaluation Standard of Solar Architecture

	Evaluation Item		Remark	Point	
Solar Radiation (1 Item: 20 %)	Effective Solar Irradiance		Effective Solar Irradiance Factor	20	
		on through Natural ilation	Natural Ventilation: 3	3	
		Transparent Envelope	Total Energy Elimination Factor:3	11	
Energy	Heating & Cooling		Total Energy Transmittance Factor:3		
(3 Items: 20%)	Load Reduction	Opaque Envelope	Thermal Conductance: 5		
	Consideration for Power Generation		Shaded Area on Module: 3		
	Impro	vement	Module Surface Temperature: 3	6	
Aesthetic View			Harmony with Architecture	5	
(1 Item: 10%)	•Harmony with Architecture or Finish Envelope		Finish Material	5	
06/06/2017				25	

Evaluation Standard of Solar Architecture

	E	valuation Item	Remark	Point
	Acoustic Env.	Puffer against outside noise		5
Indoor	Thermal (Air)	Thermal Comfort	Operative Temperature	3
Environmental	Env.	Air Flow	Balanced Airflow	2
Quality (3 Items: 15%)	Lighting Env.	Sunshine Hour in Room		3
		Glare		2
	Building Energy Management System		Intelligent Building Management System	3
	Manual for Maintenance			3
Maintenance	Testing, Adjusting, and Balancing			2
(6 Items: 18%)	Monitoring		Smart Grid (Sensors)	4
-	Continuity of Effective Solar Irradiance			3
	Clean Easi	ness for Module Surface		3
06/06/2017				

Evaluation Standard of Solar Architecture

	Evaluation Item	Remark	Point
Practical Use of	Application for a New Building		3
Structure (2 Items: 10%)	Application for a Remodeling		3
Safety	Fire Resistance		2
(2 Items: 4%)	Impact Intensity		2
Environmental Friendliness (1 Item: 10%)	Co2 Evaluation through Life Cycle Analysis of a System	LCCo2	7
19 Evaluation Items		1 st Grade: 90 2 nd Grade: 80 3 rd Grade: 70	100 %

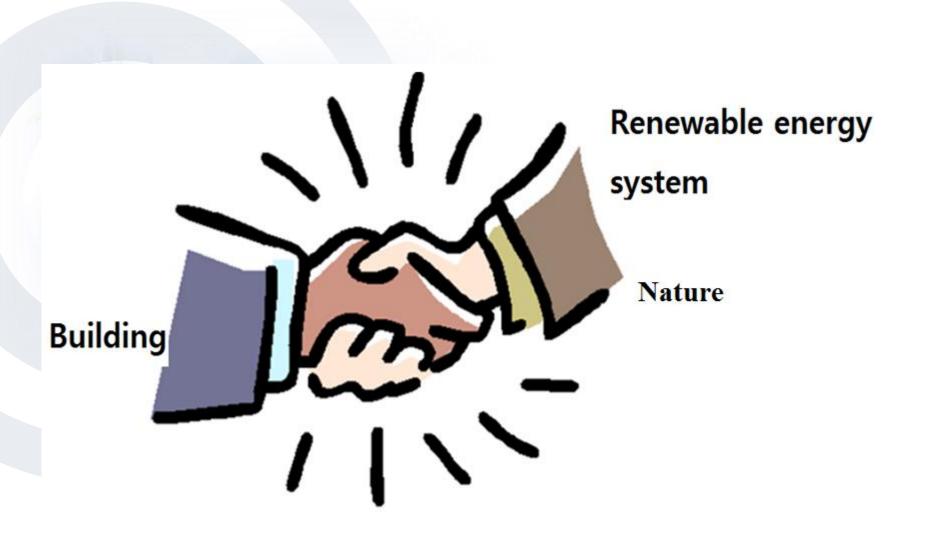
Evaluation standard for remodeling for energy conservation and green house gas mitigation

Category	Evaluation Factor			Remarks	Score
Solar Radiation (1 Item: 20 %)	Effective Solar Irradiance		Effective Solar Irradiance Factor	20	
	Energy Conservation through Natural Ventilation			Natural Ventilation	3
		Transparent Envel eating & Cooling Load Reduction		Total Energy Elimination Factor: 5	
	Heating & Cooling Load Re			Total Energy Transmittance Factor: 5	12
Energy (3 Items: 20%)	Opt		Opaque Envelope	Thermal Conductance: 2	-
	Consideration for Power Generation Improvement			No shaded Area on Module: 3	6
				Convergence idea: 3	
Aesthetic View				Harmony with Architecture : 5	10
(1 Item: 10%)	Harmony with Architecture	or Finish Envelope		Finish Material : 5	10
	Acoustic Env.	Puffer against outside no	ise	5	5
Indoor Environmental Qual		Thermal Comfort		Operative Temperature : 3	3
ity	Thermal (Air) Env. Air Flow			Balanced Airflow	2
(3 Items: 15%)		Sunshine Hour in Room			2
	Lighting Env.				3

Evaluation standard for remodeling for energy conservation and green house gas mitigation

	Building Energy Management System	Intelligent Building Management System	5
	Monitoring		5
Maintenance	Continuity of Effective Solar Irradiance		4
(4 Items: 17%)	Cleaning for Module Surface Smart Grid (Sensors)		3
Practical Use of Structure	Application for a New Building		3
(2Items: 6%)	Application for a Remodeling		3
Safety	Fire Resistance		2
(2 Items: 4%)	Impact Intensity		2
Environmental Friendliness (1 Item: 7%)	CO ₂ Evaluation through Life Cycle A nalysis of a System	LCCO ₂	7
8 Categories	17 Evaluation Factors	1 st Grade: 90, 2 nd Grade: 80, 3 rd Grade: 70	100

Results and discussion



Results and discussion

The ecological application of photovoltaic module, which can get about 11% more power generation rather than simple application and conserve building energy in an ecological way, is very effective.

6

-Photovoltaic system as an exterior shading or double envelope with high insulation window and wall could be a good example for at least 50% energy conservation and 40% green house gas mitigation to a conventional building besides PV power generation.

Thank you for your attention!