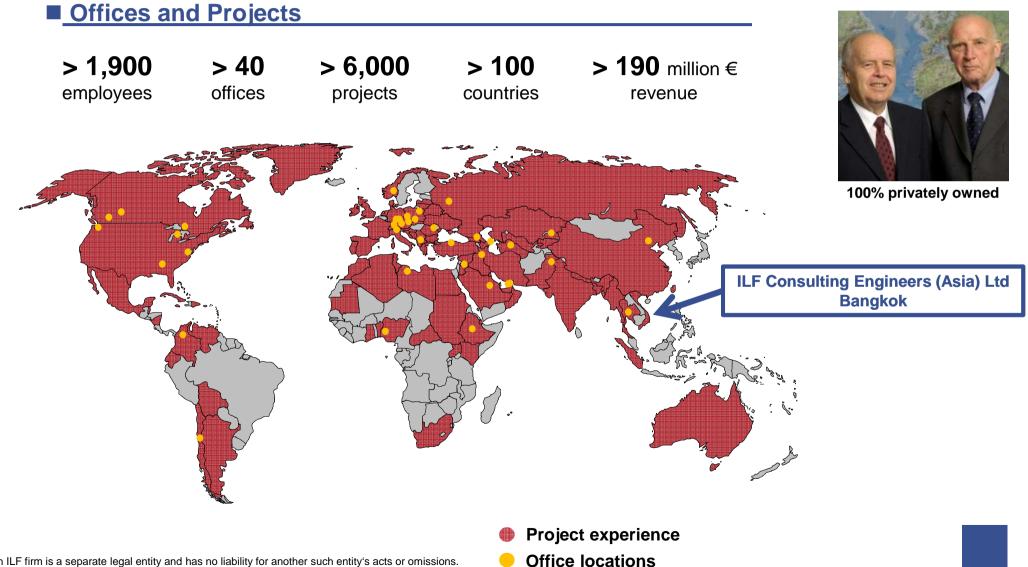
ILF Consulting Engineers (Asia) Ltd

Optimized Hybridization and Storage in Mini Grids using Renewable Energy Sources from Solar-PV and Wind

ENGINEERING EXCELLENCE

8th Asian Solar Energy Forum, ADB – Manila, Philippines – 15 June 2015



Content of the Presentation

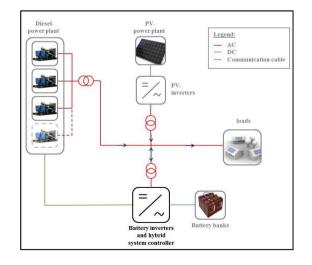
- > ILF Group
- General Explanation of Hybridization
- Potential / Opportunities of Hybridization
- Arguments for Hybridization
- Challenges of Hybridization
- Introduction of ILF-Opti-Hybrid-Tool
- Selected References

Each ILF firm is a separate legal entity and has no liability for another such entity's acts or omissions.

What is Hybridization?

What to hybridize:

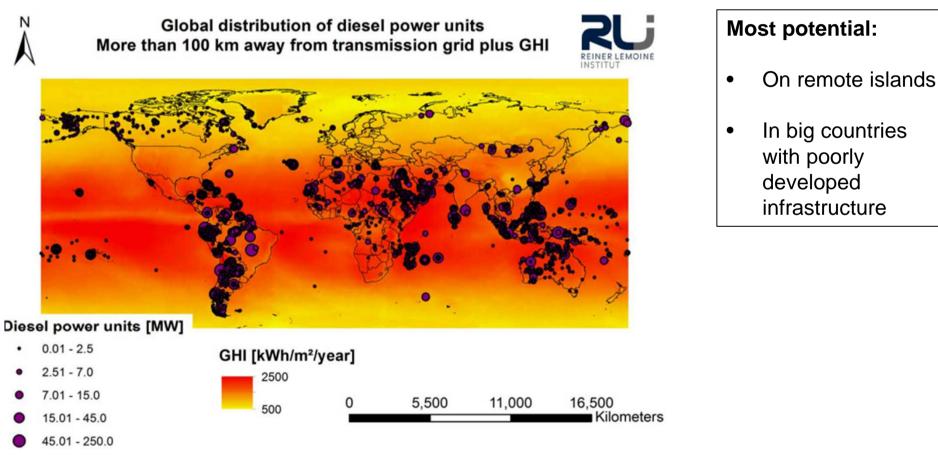
- Diesel
- Gas
- Heavy fuel oil


Hybrid system types:

- stand-alone
- mini-grid
- micro-grid
- isolated-grid

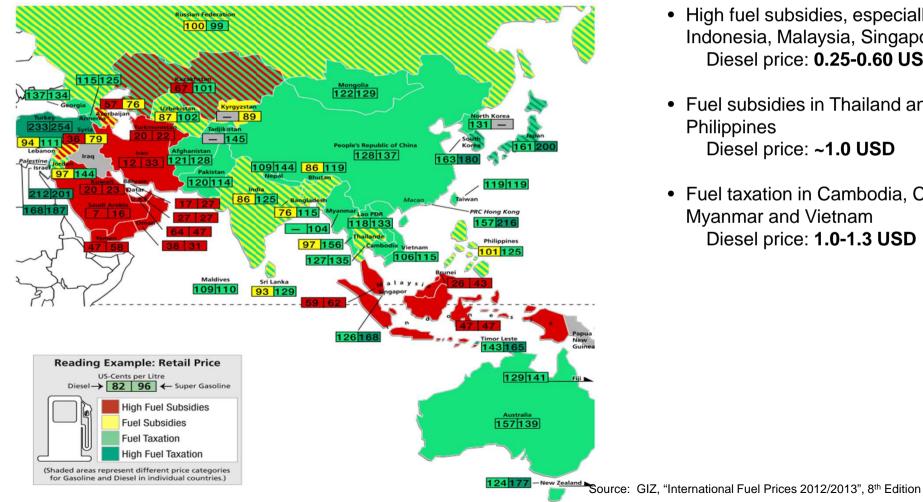
How to hybridize:

- PV
- Wind
- Hydro power
- Battery



8th ASEF Opportunities

Potential / Opportunities for Hybridization



Source: Reiner Lemoine Institute, "Hybridisierungspotentiale von Dieselkraftwerken"

8th ASEF **Opportunities**

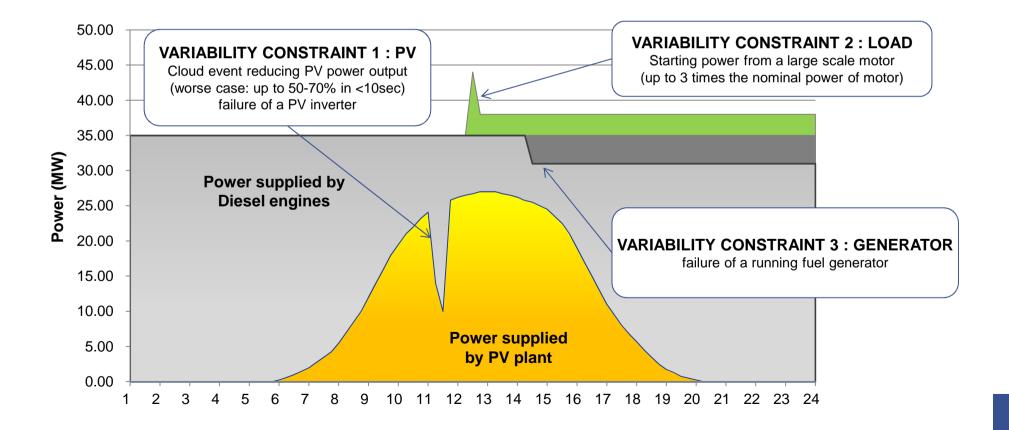
Potential / Opportunities for Hybridization

- High fuel subsidies, especially in Indonesia, Malaysia, Singapore Diesel price: 0.25-0.60 USD
- Fuel subsidies in Thailand and **Philippines** Diesel price: ~1.0 USD
- Fuel taxation in Cambodia, China, Myanmar and Vietnam Diesel price: 1.0-1.3 USD

8th ASEF Arguments for Hybridization

Arguments for hybrid systems

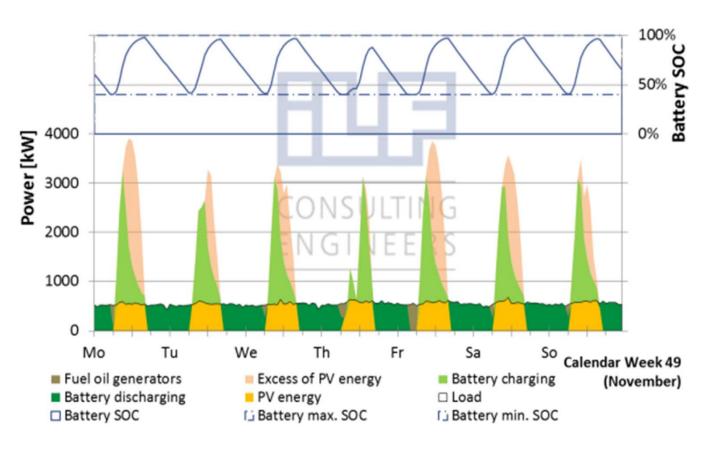
- Decreasing PV module & battery price -> lower system costs
- > More independence from imports and price fluctuations of oil price
- Remote areas -> high transport and logistic costs
- Reducing operating hours of generators -> higher life expectancy
- Low maintenance
- Increasing grid stability
- Natural market
- Reducing CO₂-emissions, environmentally friendly -> "green image"



8th ASEF Challenges

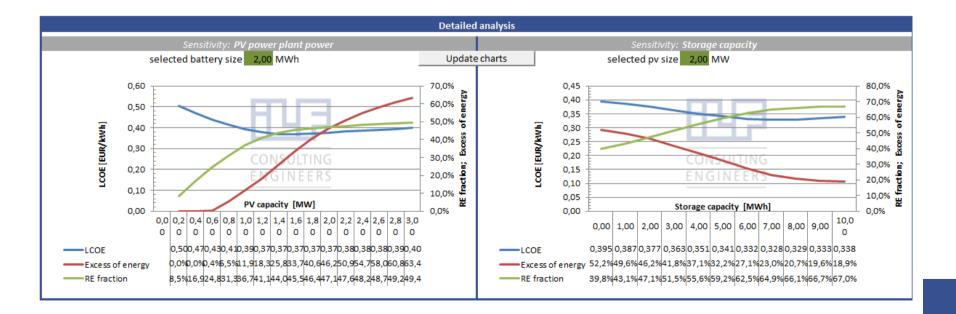
Challenges in Hybridization with PV

- Reliable Energy Management System to ensure grid stability is key
 - Sufficient Primary / Spinning reserve (from Fuel generators) required at any time


■ ILF Opti-Hybrid-Tool

- Developed by ILF
- Based on Microsoft Excel VBA
- Using hourly values of load profile over one year
- Using hourly values of PV, wind and battery over one year
 - -> Very flexible tool for new or existing power plants!
- Input data
- Sensitivity analysis
- Output data: technical & financial

■ ILF Opit-Hybrid-Tool


- Input data:
- Load profiles
- Irradiation
- Economic parameters
- Grid stability parameters
- Diesel generator settings
- PV generator settings
- Battery system settings
- Sensitivity analysis

■ ILF Opit-Hybrid-Tool

- Sensitivity analysis
- Variation of PV capacity
- Variation of wind capacity
- Variation of battery capacity
 - -> Technical-economic design optimization

■ ILF Opit-Hybrid-Tool

Output data: technical

3 variability constraints are taken into account in the simulation to allow checking the robustness and reliability of the designed systems by calculating Grid stability indicators (probability analysis)

	Grid stability							
	Case 1: Fast RE dropdown		_					
	Max short term PV power loss	60%	of current power					
	Max short term Wind power loss	75%						
	Annual probability of occurrence	4,17%						
Inputs:	Case 2: Startup of biggest load / engine							
	Nominal power of biggest load / engine	50,00	kW					
	Inrush power	200%	of nominal power					
	Annual probability of occurrence	8,33%						
	Case 3: Failure of largest Diesel generator							
	Annual probability of occurrence	0,07%	[

Results after simulation

Grid stability indicators (worst case scenarios)													
			Ensured stability on the year			Annual probability of occurrence			Probability of network instability on the year				
			Base Case	Calcul	ated scenario		Base Case	Cal	culated scenario		Base Case	Calc	ulated scenario
Ĕ	Case 1 Fast RE dropdown			Δ	92%			\triangle	4,2%			\triangle	0,34%
eve	Case 2 Startup of biggest load	\triangle	97%	\triangle	95%		8,3%	\diamond	8,3%	\triangle	0,27%	\triangle	0,43%
- <u>-</u>	Case 3 Failure of largest generator	\diamond	59%	\diamond	63%	\circ	0,1%	\bigcirc	0,1%	\circ	0,03%	\bigcirc	0,03%
Sir	Total									Δ	0,29%	Δ	0,79%
<u>ط 8</u>	Case 1+2			\triangle	85%			0	0,3%			0	0,05%
i Hi j	Case 1+2 Case 1+3 Case 2+3			\diamond	0%			\bigcirc	0,0%			\bigcirc	0,00%
Σõ	Case 2+3	\diamond	0%	\diamond	0%	\circ	0,0%	\circ	0,0%	\circ	0,01%	\circ	0,01%

■ ILF Opit-Hybrid-Tool

> Output data: financial

LCOE (Levelized cost of electricity) for every energy source and for the overall hybrid system

Financial factors of hybrid system

- NPV (net present value)
- IRR (internal rate of return) •
- Benefit/cost ratio ٠
- Payback period •

Revenue from savings

- Fuel cost reduction
- Avoided diesel O&M and replacement

		Base case	100% equity	30% equity
LCOE of Diesel generators	[EUR/kWh]	0,536	0,587	0,595
LCOE of PV power	[EUR/kWh]	-	0,146	0,164
LCOE of Wind power	[EUR/kWh]	-	-	-
LCOE of Renewable power	[EUR/kWh]	-	0,164	0,182
LCOE of the hybrid system	[EUR/kWh]	-	0,358	0,371

	(-1	
		100% equity	30% equity
NPV	[kEUR]	28.190,0	23.757,5
IRR	[%]	29,39%	24,57%
Benefit/cost ratio	[1]	2,99	2,73
Payback period	[a]	4,23	5,76
Revenue from savings			
		SUM	NPV
Fuel cost reduction	[kEUR]	104383,4	38516,6
Avoided diesel O&M and replacement	[kEUR]	9325,8	3804,3

8th ASEF

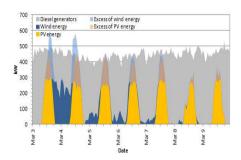
Selected References

Photovoltaic / Diesel Hybrid Power Plant, UAE

- 1) PV
- 2) PV & Wind
- 3) PV, Wind & battery

8th ASEF Selected References

Photovoltaic / Diesel Hybrid Power Plant, UAE

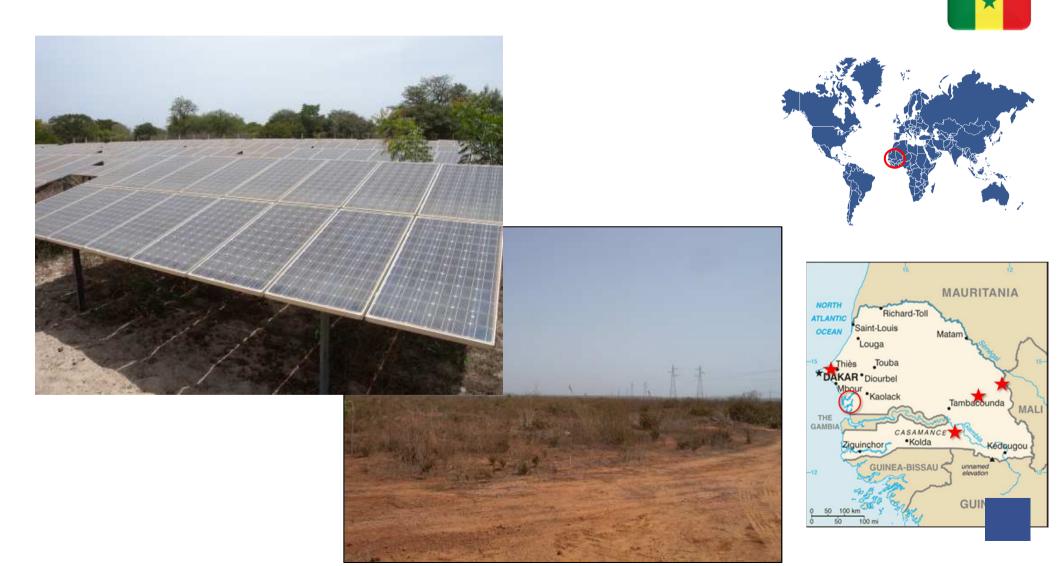

Client: Dubai Electricity and Water Authority (DEWA)

Type of work: PV / Diesel hybrid power plant on an off-grid island

- **Time frame:** 2013-2015
- Data: Diesel power plant: 3.2 MW (4 x 0.8MW) MV Grid: 11 kV, PV power plant: 0.8 MW,

Services:

- Detailed technical & financial feasibility study (6 scenarios including PV, Wind and battery)
 - Site investigations, Geotechnical surveys
 - Conceptual design
 - Financial analyses (CAPEX, OPEX, LCOE, Rol etc.)
 - Owner's engineer: EPC Tender Design, Tender evaluation, design vetting, site supervision, test procedures
 - Commissioning in 01/2015

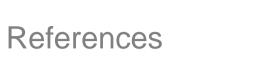


8 PV interconnected and hybrid power plants, Senegal

Selected References 8 PV interconnected and hybrid power plants, Senegal

Client: SENELEC / KfW

Type of work: PV and PV / Diesel / Battery power plants


- Time frame: 2014
- Data:

8th ASEF

- 1 grid connected PV (15 MWp), 7 PV/Diesel/Battery hybrid
- syst.
- 7 Remote Cities from 5,000 to 50,000 inhabitants
- Total PV power: 17MWp ; Total battery capacity: 2.4MWh; Total Diesel generators: 3.6MW

Services: Feasibility studies:

- Detailed socio-economic site survey
- Energy demand analysis of the 7 cities (load profile and future evolution until 2026)
- Technical audits: 7 existing diesel power stations & 4 PV plants
- Site selection and evaluation for the new power plants
- Detailed Technical and economic Feasibility Study of each plant
- Optimized sizing of the power plants (based on the LCOE)
- Conceptual design of all 8 power plants
- EIA study for the 8 project locations

8th ASEF Quick Assessment - Input Data

Initial calculations to identify the feasibility of project – Input Data

- ➢ Location, available area
- > Load curve, ideal case: hourly values over one year, biggest load/motor
- > Diesel price incl. transportation costs, diesel generator setting, number
- Discount rate / inflation rate / economic lifetime of the plant

8th ASEF

Quick Assessment - Results

Initial calculations to identify the feasibility of project - Results

- Energetic Result
 - share of diesel / PV / wind / battery [MWh]
 - renewable energy fraction [%]
 - consumption and reduction of fuel oil [%]

Grid Stability

• Annual probability of network instability on single / multiple events [%]

Financial Results

- LCOE for overall hybrid system [\$\$\$/kWh]
- IRR [%]
- payback period [a]

GMS Power Summit Photovoltaics combined with Pumped Storage Plants

Thank you for your attention!

www.ilf.com

ENGINEERING EXCELLENCE

8th Asian Solar Energy Forum – Manila, Philippines– 15 June 2015

