Decentralized Power Grids: Successfully Integrating Distributed Generation with Cyber Security

Tim Watkins
Lead Application Engineer, CISSP
Schweitzer Engineering Laboratories, Inc.

Decentralized Power Grids

Supplementary power source(s) to the existing centralized power grid

- Energy source(s) located closer to consumption
- Keep the lights on
- Enhance system user economics
- Facilitate renewable energy integration

Decentralize Systems Must:

- Decoupling
- Island Detection
- Maintain Inertia
- Frequency Control
- Load Shedding
- Load Restoration
- Communication

Islanding Possibilities

- Decentralized power to meet requirements
- Cybersecurity implications
- All generations need to maintain synchronization

Loads Will Have Different Requirements

	Residential	Industrial
Power Reliability	*	
Energy Efficiency		×
Payback Period	Years	Days
Intermittent Energy Sources		×
Inverter-Based Generation		×

Microgrid Point of Interface (POI) Relay

- Grid reconnection
- Seamless islanding and load shedding
- Short- and open-circuit protection
- Power and Power Factor control at POI

DER Relay Provides

- Protection
- Governor and exciter dispatch
- Inverter dispatch
- Parallel controls
- Distributed energy resource (DER) load sharing
- Voltage regulation
- Frequency regulation

DER – Normal Morning

7:00 AM

Batteries partially drained from lack of solar

Power = Central Grid + Wind

Solar charging batteries

DER – Peak Shaving (Economic)

1:00 PM

High Demand on Central Grid

Disconnect battery charging

Connect batteries and solar into system

DER – Loss of Central Grid

Power Event / Islanding

Shed Load based on priority

Switch Distributive Energy Sources

Wait for generator to start and provide inertia

Bring additional load back on based on generation priority

Balancing Risks

Complicated in energy systems with multiple owners

Important discussion for distributive generation

Not just cyber!

Framework

- National Institute of Standards and Technology (NIST)
- NIST Cybersecurity Framework (CSF)

The Cybersecurity Framework's prioritized, flexible, and cost effective approach helps to promote the protection and resilience of critical infrastructure and other sectors important to the economy.

Security Framework	Identify	Identify baseline system and prioritize risk to implement selected security controls	Risk Management
	Protect	Assess implementation and authorize system risks	
	Detect	Monitor continuous monitoring tools	
	Respond	Execute plans, policies, and procedures to analyze and contain situation	Contingency and
		Incident Response	
	Learn	Review event to improves plans, policies, and procedures	

Questions?