

Renewables-Based Microgrids: An Emerging Urban Energy Solution for Developing Asia

By Recca Liem

ENEA is a leading and independent strategy consultancy in energy and environmental transition

OUR SERVICES

OUR AREAS OF EXPERTISE

A microgrid is a set of energy resources that can operate independently from the electricity grid.

Microgrids include various components: generation, loads and back-up facilities that are optimized by a controller and an EMS

- (1) CHP: Combined Heat and Power plant
- (2) EV: Electric Vehicles
- (3) PCC: Point of Common Coupling
- (4) HVAC: Heating, Ventilation and Air Conditioning

Traditional microgrids relied on fossil fuels, but now low-carbon microgrids are emerging which run with predominantly renewable power.

Embedding renewables could improve the economic, operational and environmental benefits of microgrids

Challenge	Objectives	Urban Applications
Energy security	 Diversify the energy supply resources by onsite production Reduce the risks for fuel supply of fossil fuel 	 Data centres Critical industries Hospitals Military camp Research labs
Sustainability	 Reduce carbon emissions Reduce the health and environmental impact to local communities 	 Industries Tertiary Commercial zones Municipalities Eco-districts Universities
Costs reduction	 Decreasing costs of rooftop solar and storage can lower the overall costs of microgrid Could generate extra revenue through selling green certificate 	IndustriesTertiaryCommercial zonesMunicipalitiesUniversities

Assets

EXISTING

Only

distribution network at the school

2015 UPGRADE

2 MW solar

2 MW li-ion battery (0.9 MWh capacity)

2MW lead-acid battery (2.4 MWh capacity)

Drivers

Energy security

Costs reduction:

Reduce transmission and capacity payments

Sustainability:

In 2017, 55% of GMP electricity sales must be renewable

EXPECTATIONS

Back-up power for Rutland high school, that would become the city emergency shelter

Reduce capacity payment for GMP with peak shaving (\$0.3 to \$0.5 Mn/MW)

With Stafford Hill, GMP solar capacity went from 0.5 to 2.5 MW

RESULTS

No natural disasters (or other grid outages) happened so far

\$2 million saved per year: 2 MW peak shaving, and frequency regulation, solar energy generation, RECs (1)

Based on 2015 data, renewable energy will represent 18% of GMP production, and solar 2% in 2016.

Princeton University

Assets

EXISTING

Distribution network has been continuously improved since the 1880's

1996 AND 2012 UPGRADES

15 MW Combined Heat and Power (CHP) engine (since 1996)

4.5 MW solar (since 2012)

Drivers

Energy security:

Power reliability for research facilities

Costs reduction:

Cut electricity bills

Sustainability:

Carbon emissions reduction for university image

EXPECTATIONS

- Protect research facilities from any grid flickering and/or short time outage
- Microgrid not initially planned for resiliency

Reduce overall costs thanks to internal operation of electric infrastructure

Carbon reductions from CHP and solar

RESULTS

Achieved islanded operation 3 to 4 days during Sandy hurricane

- \$4.5 million/year saved on transmission/capacity bills
- \$2 million/year saved with arbitrage
- \$450 000/year gained with grid services

Carbon reductions on solar can be claimed when solar RECs sale stops at the end of lease contract in 2020

Assets

EXISTING

2012 UPGRADE

Drivers

Energy security:

Increase prison security

Costs reduction:

Avoid peak-hour electricity consumption

Sustainability:

Test bed for the DoE program on renewable energy

EXPECTATIONS

Before 2012, twice outages a year with existing on-site generation (fuel cell and fixed PV)

Zero net consumption at peak hours

Increase know-how on distributed and renewable energy sources management

RESULTS

After 2012, no other grid failures happened.

1 MW consumption from the grid at peak hour \$100 000 saved per year

- Choice of innovative technologies (fuel cell, switch)
- Lessons learnt on batteries management

Renewable-based microgrids could offer attractive solutions to developing Asia

In areas that power / fuel supply is not stable

► Improve reliability

In areas that power supply is expensive

Reduce energy losses and costs

In areas that power supply is based on fossil fuels mainly

Reduce emissions

But the business case of these solutions would still depend on many other factors, including:

Accessibility of revenue streams, business models, financing schemes etc.

Accessibility to various value streams will determine the project viability

Man stakeholders may be involved in the microgrid ecosystem

Numerous value streams could be captured

Services to the system operator (national)

- Frequency and voltage regulation
- Spin / non-spin reserves
- Black start
- Demand-response

Public subsidies

- Feed-in-tariffs, green certificates, etc.
- Direct grant, tax credit, public loans etc.

Energy arbitrage

Energy injected into and taken from the main grid

Local services to the DSO

- investment deferrals
- Voltage regulation

Quality of supply

- Higher rates
- Power sale contract

New business models emerge according to regulations and capabilities/interests of stakeholders

Innovative financing schemes allow companies to benefit from microgrids without significant upfront investment

- (1) IPP: Independent Power Producer
- (2) PPA: Power Purchase Agreement
- (3) Eng: Engineering services
- (4) LTSA: Long-Term Services Agreement

Contact:

Recca Liem - Principal

recca.liem@enea-consulting.com