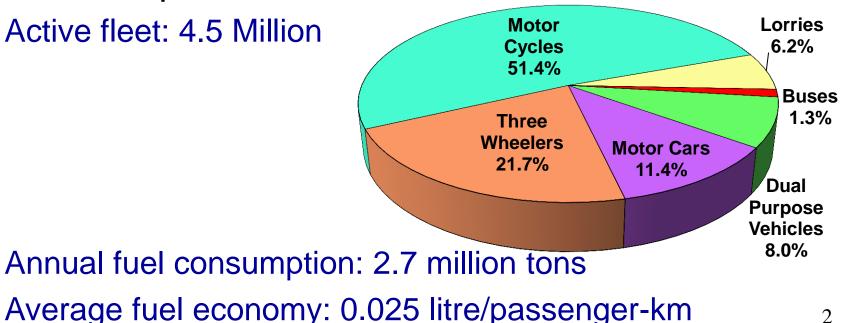
ASIA CLEAN ENERGY FORUM 2016

Asian Development Bank, Manila, Philippines 06 – 10 June 2016

Session 20:

Transport and Energy: Examples that Work and Directions for the Future

Development of Fuel Economy Standards for Light Duty Vehicles in Sri Lanka


> Thusitha Sugathapala Department of Mechanical Engineering University of Moratuwa

> > 10th June 2016

AN OVERVIEW

- Transport Sector in Sri Lanka
 - Dominated by road transport
 - 110 billion passenger-km/yr
 - ✓ 95.0% road; 5.0% rail
 - 7 million ton-km per year
 - ✓ 97.5% road; 2.0% rail; 0.5% water
- Road Transport:

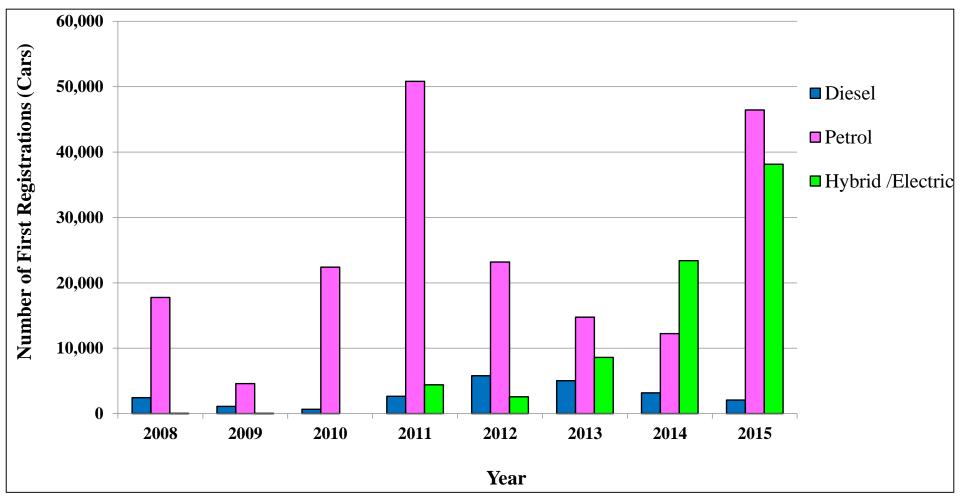
Active fleet: 4.5 Million

FUEL ECONOMY OF ROAD TRANSPORT

Local Initiatives

- Main interventions so far are primarily related to mitigation of air emission
 - ✓ Vehicle Emission Testing Programme
 - ✓ Fuel Quality Improvements
 - ✓ Fiscal measures.
- Energy Efficiency / Fuel Economy
 - ✓ Awareness & education / Eco-driving
 - ✓ Baseline data collection (in progress)
 - Development of driving cycle (in progress)
 - \checkmark Fuel economy labeling (proposed).
- Technology shift in LDVs
 - ✓ Hybrid/Electric vehicles
 - ✓ Integrated EV to Solar PV (net metering)
 - Conversion of ICE to electric/hybrid (pilot testing).

Key Interventions proposed within urban development programs:


- Mass transit: BRT / Monorail
- ✓ Railway electrification✓ NMT

Yet, the private vehicles would have dominant influence on the performance of the transport sector for the years to come.

FUEL ECONOMY OF ROAD TRANSPORT

Local Initiatives

Emergence of Hybrid/Electric Vehicles

Scope:

- Objective is to establish a baseline for the fuel economy of new passenger cars in the country
 - ✓ develop strategies and implement vehicle fuel economy policies,
 - ✓ supporting the regional and global tracking of the fuel economy performance towards 50by50 target set by GFEI.

Methodology: Main Steps – GFEI

Step 1: Establish the baseline year.

- Step 2: Establish the data points that are required to collect for the estimation of a robust baseline.
- Step 3: Find and evaluate available new car registration data sources.
- Step 4: Calculate the average fuel economy and other characteristics for newly registered vehicles in the baseline year.
- Step 5: Repeat the same exercise using uniform methodology at regular intervals (to derive annual average variations).

- Methodology: Estimation of FE / GHG Emissions
 - Reported in international databases/ Manufacturers data:
 - ✓ Based on various test driving cycles (and different units)
 - ✓ Need to converted to a single test driving cycle (and same unit), for which conversion factors have been developed.
 - Units:
 - ✓ Fuel economy: I/100-km; mpg; MJ/km; km/I
 - ✓ GHG Emissions: gCO₂/km; gCO₂/mile
 - Driving cycles:
 - ✓ New European drive cycle (NEDC): EU, India, China, Australia
 - US Corporate Average Fuel Economy (US CAFE): US, Canada, South Korea. Mexico
 - ✓ JC08: Japan
 - World-wide Harmonized Light-duty Test Cycle (WLTC) is been developed.

Methodology: Estimation of FE / GHG Emissions
Conversion formula:

[Adjusted fuel economy value] = [Original fuel economy value] ×

[Unit conversion] × [Test cycle multiplier].

Test cycle conversion factors:

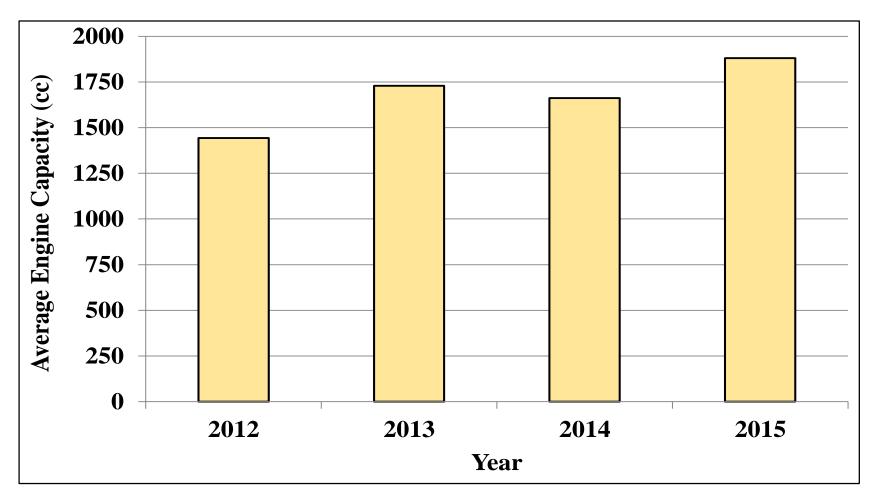
Conversion Factor	Test Cycles		
	NEDC-JC08	CAFE-JC08	CAFÉ- NEDC
Test cycle multiplier (simple average)	1.15	1.29	1.12

Source: ICCT, 2007

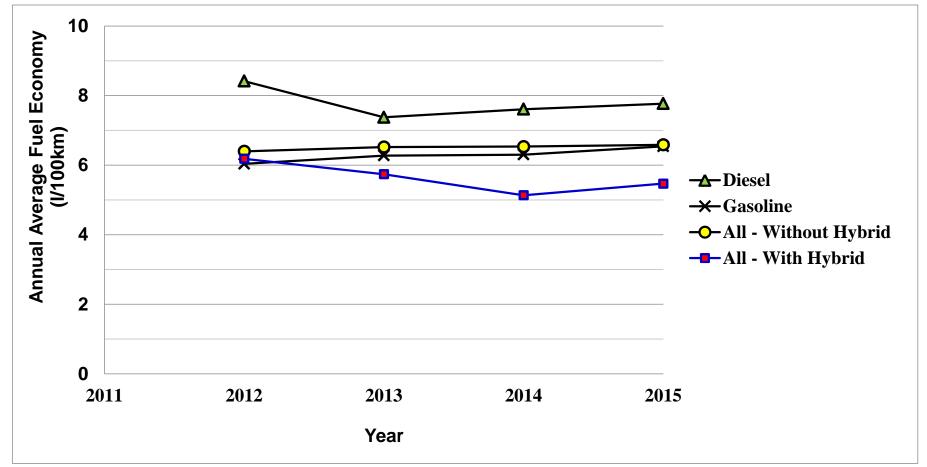
Unit conversions in fuel economy and GHG emissions:

Metric	Standard A	Standard B	Conversion
Fuel economy	km/l	mpg	$B = A \times 2.35$
	l/100 km	mpg	B = 235.2/A
	CO ₂ g/km	mpg	$B = 5469/A^{(1)}$
GHG emissions	km/l	CO ₂ g/km	B = 2325/A
	l/100 km	CO_2 g/km	$B = A \times 23.2$
	mpg	CO ₂ g/km	$B = 5469/A^{(1)}$

Notes: (1) For diesel vehicles, B = 6424/A to reflect the higher carbon content of diesel fuel. Source: ICCT, 2007

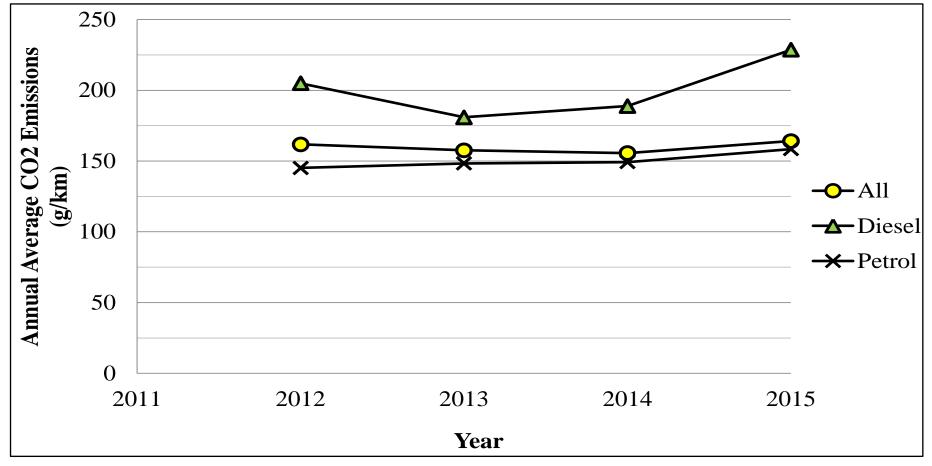

Data Requirement

- Main Information:
 - \checkmark Vehicle make and model, and if possible configuration,
 - ✓ Model production year & Year of first registration,
 - ✓ Fuel type and Engine size,
 - Domestically produced or imported,
 - ✓ New or second hand import,
 - ✓ Rated fuel economy per model and test cycle basis,
 - ✓ Number of sales by model.
- Main Sources:
 - ✓ Local DMT, Vehicle Importers; VET Project Office
 - ✓ Global Vehicle manufacturers; Fuel economy data bases.


Sample (Random selection - VET database during a year)

- ✓ Sample size = 16,825 (73% Gasoline; 27% Diesel)
- ✓ 45 makes.

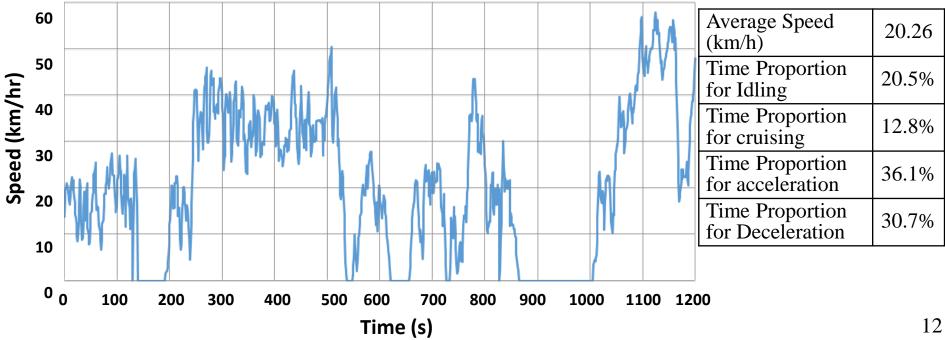
- Characteristics of the Vehicles
 - Engine Capacities Yearly average:



- Characteristics of the Vehicles
 - Annual average fuel economy of cars:

- → Without Hybrid: Average FE = 6.5 I/100-km (Global Average = 7.1 I/100-km)
- \rightarrow With Hybrid: Average FE = 5.6 l/100-km (15% Reduction)

- Characteristics of the Vehicles
 - Annual average GHG emissions of cars:


 \rightarrow Without Hybrid: Average GHG Emissions = 160 g CO₂/km

FUEL ECONOMY LABELING

Main Steps

- Establish a representative driving cycle
- Determine cycle conversion factor
- Design format of the fuel economy label
- Set fuel economy benchmarks for the energy labeling.

Expected to accomplish by mid 2017

Colombo Driving Cycle

CONCLUTIONS

- Use of cars in the country is on the rise, so does the average engine capacity.
- Still the ICE technology dominates, though use of hybrid/electric vehicles are emerging (16% of active fleet, surpassing diesel).
- Annual average fuel economy and GHG emissions of ICE cars in Sri Lanka are about 6.5 I/100 km and 160 g/km of CO₂.
- Use of hybrid vehicles has improved the fuel economy by 15%, indicating considerable potential for further improvements.
- Fuel economy labelling is expected to improve the energy efficiency in the transport sector.
- Improving fuel economy of vehicles would play a major role within broader interventions in sustainable city programmes.

Acknowledgements

- United Nations Environment Programme (UNEP)
- Global Fuel Economy Initiative (GFEI)
- Clean Air Sri Lanka
- Asian Development Bank (ADB)